Skip to content

[FAQ] Module 6: ValueError: not enough values to unpack (expected 3, got 1) #35

@dmitrykosintsev

Description

@dmitrykosintsev

Course

machine-learning-zoomcamp

Question

When running parse_xg_output(output), I get the following error:

ValueError                                Traceback (most recent call last)
Cell In[67], line 1
----> 1 df_score = parse_xg_output(output)

Cell In[66], line 5, in parse_xg_output(output)
      2 results = []
      4 for line in output.stdout.strip().split('\n'):
----> 5     it_line, train_line, val_line = line.split('\t')
      7     it = int(it_line.strip('[]'))
      8     train = float(train_line.split(':')[1])

ValueError: not enough values to unpack (expected 3, got 1)

Answer

Check the following outputs:

print(repr(output.stdout))

and

print(repr(output.stderr))

If they are empty, this means XGBoost does not print training logs to stdout.
One solution is to use the training results returned by the Python API:

evals_result = {}

model = xgb.train(
    params=xgb_params,
    dtrain=dtrain,
    num_boost_round=200,
    evals=[(dtrain, 'train'), (dval, 'val')],
    evals_result=evals_result,
    verbose_eval=True
)

# Convert results to a DataFrame directly
df_results = pd.DataFrame({
    'num_iter': range(len(evals_result['train']['auc'])),
    'train_auc': evals_result['train']['auc'],
    'val_auc': evals_result['val']['auc']
})

df_results.head()

This will replace relevant code in parse_xg_output(). Also, the function now does not take any parameters.

Checklist

  • I have searched existing FAQs and this question is not already answered
  • The answer provides accurate, helpful information
  • I have included any relevant code examples or links

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions