|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +print("# groupby-datafusion.py", flush=True) |
| 4 | + |
| 5 | +import os |
| 6 | +import gc |
| 7 | +import timeit |
| 8 | +import datafusion as df |
| 9 | +from datafusion import functions as f |
| 10 | +from datafusion import col |
| 11 | +from pyarrow import csv as pacsv |
| 12 | +from pyarrow import parquet as paparquet |
| 13 | + |
| 14 | +exec(open("./_helpers/helpers.py").read()) |
| 15 | + |
| 16 | +def ans_shape(batches): |
| 17 | + rows, cols = 0, 0 |
| 18 | + for batch in batches: |
| 19 | + rows += batch.num_rows |
| 20 | + if cols == 0: |
| 21 | + cols = batch.num_columns |
| 22 | + else: |
| 23 | + assert(cols == batch.num_columns) |
| 24 | + |
| 25 | + return rows, cols |
| 26 | + |
| 27 | +# ver = df.__version__ |
| 28 | +ver = "6.0.0" |
| 29 | +git = "" |
| 30 | +task = "groupby" |
| 31 | +solution = "datafusion" |
| 32 | +fun = ".groupby" |
| 33 | +cache = "TRUE" |
| 34 | +on_disk = "FALSE" |
| 35 | + |
| 36 | + |
| 37 | +data_name = os.environ['SRC_DATANAME'] |
| 38 | +data_format = os.environ['SRC_FORMAT'] |
| 39 | +if(data_format.lower()=='parquet'): |
| 40 | + src_grp = os.path.join(os.getcwd(), "data", data_name+"_partitioned/") |
| 41 | +else: |
| 42 | + src_grp = os.path.join(os.getcwd(), "data", data_name+".csv") |
| 43 | +print("loading dataset %s" % src_grp, flush=True) |
| 44 | + |
| 45 | +task_init = timeit.default_timer() |
| 46 | +if(data_format.lower()=='parquet'): |
| 47 | + data = paparquet.read_table(src_grp) |
| 48 | +else: |
| 49 | + data = pacsv.read_csv(src_grp, convert_options=pacsv.ConvertOptions(auto_dict_encode=True)) |
| 50 | +print(f"done reading base dataframe in {timeit.default_timer() - task_init}") |
| 51 | + |
| 52 | +ctx = df.ExecutionContext() |
| 53 | +ctx.register_record_batches("x", [data.to_batches()]) |
| 54 | + |
| 55 | +in_rows = data.num_rows |
| 56 | +print(in_rows, flush=True) |
| 57 | + |
| 58 | +task_init = timeit.default_timer() |
| 59 | +print("grouping...", flush=True) |
| 60 | + |
| 61 | +question = "sum v1 by id1" # q1 |
| 62 | +gc.collect() |
| 63 | +print("\nRunning: " + question, flush=True) |
| 64 | +t_start = timeit.default_timer() |
| 65 | +ans = ctx.sql("SELECT id1, SUM(v1) AS v1 FROM x GROUP BY id1").collect() |
| 66 | +shape = ans_shape(ans) |
| 67 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 68 | +t = timeit.default_timer() - t_start |
| 69 | +m = memory_usage() |
| 70 | +t_start = timeit.default_timer() |
| 71 | +df = ctx.create_dataframe([ans]) |
| 72 | +chk = df.aggregate([], [f.sum(col("v1"))]).collect()[0].column(0)[0] |
| 73 | +chkt = timeit.default_timer() - t_start |
| 74 | +print(f"Finished 1st run aggregation in {chkt}") |
| 75 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 76 | +del ans |
| 77 | +gc.collect() |
| 78 | +t_start = timeit.default_timer() |
| 79 | +ans = ctx.sql("SELECT id1, SUM(v1) AS v1 FROM x GROUP BY id1").collect() |
| 80 | +shape = ans_shape(ans) |
| 81 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 82 | +t = timeit.default_timer() - t_start |
| 83 | +m = memory_usage() |
| 84 | +t_start = timeit.default_timer() |
| 85 | +df = ctx.create_dataframe([ans]) |
| 86 | +chk = df.aggregate([], [f.sum(col("v1"))]).collect()[0].column(0)[0] |
| 87 | +chkt = timeit.default_timer() - t_start |
| 88 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 89 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 90 | +del ans |
| 91 | + |
| 92 | +question = "sum v1 by id1:id2" # q2 |
| 93 | +gc.collect() |
| 94 | +print("\nRunning: " + question, flush=True) |
| 95 | +t_start = timeit.default_timer() |
| 96 | +ans = ctx.sql("SELECT id1, id2, SUM(v1) AS v1 FROM x GROUP BY id1, id2").collect() |
| 97 | +shape = ans_shape(ans) |
| 98 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 99 | +t = timeit.default_timer() - t_start |
| 100 | +m = memory_usage() |
| 101 | +t_start = timeit.default_timer() |
| 102 | +df = ctx.create_dataframe([ans]) |
| 103 | +chk = df.aggregate([], [f.sum(col("v1"))]).collect()[0].column(0)[0] |
| 104 | +chkt = timeit.default_timer() - t_start |
| 105 | +print(f"Finished 1st run aggregation in {chkt}") |
| 106 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 107 | +del ans |
| 108 | +gc.collect() |
| 109 | +t_start = timeit.default_timer() |
| 110 | +ans = ctx.sql("SELECT id1, id2, SUM(v1) AS v1 FROM x GROUP BY id1, id2").collect() |
| 111 | +shape = ans_shape(ans) |
| 112 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 113 | +t = timeit.default_timer() - t_start |
| 114 | +m = memory_usage() |
| 115 | +t_start = timeit.default_timer() |
| 116 | +df = ctx.create_dataframe([ans]) |
| 117 | +chk = df.aggregate([], [f.sum(col("v1"))]).collect()[0].column(0)[0] |
| 118 | +chkt = timeit.default_timer() - t_start |
| 119 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 120 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 121 | +del ans |
| 122 | + |
| 123 | +question = "sum v1 mean v3 by id3" # q3 |
| 124 | +gc.collect() |
| 125 | +print("\nRunning: " + question, flush=True) |
| 126 | +t_start = timeit.default_timer() |
| 127 | +ans = ctx.sql("SELECT id3, SUM(v1) AS v1, AVG(v3) AS v3 FROM x GROUP BY id3").collect() |
| 128 | +shape = ans_shape(ans) |
| 129 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 130 | +t = timeit.default_timer() - t_start |
| 131 | +m = memory_usage() |
| 132 | +t_start = timeit.default_timer() |
| 133 | +df = ctx.create_dataframe([ans]) |
| 134 | +chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] |
| 135 | +chkt = timeit.default_timer() - t_start |
| 136 | +print(f"Finished 1st run aggregation in {chkt}") |
| 137 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 138 | +del ans |
| 139 | +gc.collect() |
| 140 | +t_start = timeit.default_timer() |
| 141 | +ans = ctx.sql("SELECT id3, SUM(v1) AS v1, AVG(v3) AS v3 FROM x GROUP BY id3").collect() |
| 142 | +shape = ans_shape(ans) |
| 143 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 144 | +t = timeit.default_timer() - t_start |
| 145 | +m = memory_usage() |
| 146 | +t_start = timeit.default_timer() |
| 147 | +df = ctx.create_dataframe([ans]) |
| 148 | +chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] |
| 149 | +chkt = timeit.default_timer() - t_start |
| 150 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 151 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 152 | +del ans |
| 153 | + |
| 154 | +question = "mean v1:v3 by id4" # q4 |
| 155 | +gc.collect() |
| 156 | +print("\nRunning: " + question, flush=True) |
| 157 | +t_start = timeit.default_timer() |
| 158 | +ans = ctx.sql("SELECT id4, AVG(v1) AS v1, AVG(v2) AS v2, AVG(v3) AS v3 FROM x GROUP BY id4").collect() |
| 159 | +shape = ans_shape(ans) |
| 160 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 161 | +t = timeit.default_timer() - t_start |
| 162 | +m = memory_usage() |
| 163 | +t_start = timeit.default_timer() |
| 164 | +df = ctx.create_dataframe([ans]) |
| 165 | +chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v2")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] |
| 166 | +chkt = timeit.default_timer() - t_start |
| 167 | +print(f"Finished 1st run aggregation in {chkt}") |
| 168 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 169 | +del ans |
| 170 | +gc.collect() |
| 171 | +t_start = timeit.default_timer() |
| 172 | +ans = ctx.sql("SELECT id4, AVG(v1) AS v1, AVG(v2) AS v2, AVG(v3) AS v3 FROM x GROUP BY id4").collect() |
| 173 | +shape = ans_shape(ans) |
| 174 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 175 | +t = timeit.default_timer() - t_start |
| 176 | +m = memory_usage() |
| 177 | +t_start = timeit.default_timer() |
| 178 | +df = ctx.create_dataframe([ans]) |
| 179 | +chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v2")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] |
| 180 | +chkt = timeit.default_timer() - t_start |
| 181 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 182 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 183 | +del ans |
| 184 | + |
| 185 | +question = "sum v1:v3 by id6" # q5 |
| 186 | +gc.collect() |
| 187 | +print("\nRunning: " + question, flush=True) |
| 188 | +t_start = timeit.default_timer() |
| 189 | +ans = ctx.sql("SELECT id6, SUM(v1) AS v1, SUM(v2) AS v2, SUM(v3) AS v3 FROM x GROUP BY id6").collect() |
| 190 | +shape = ans_shape(ans) |
| 191 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 192 | +t = timeit.default_timer() - t_start |
| 193 | +m = memory_usage() |
| 194 | +t_start = timeit.default_timer() |
| 195 | +df = ctx.create_dataframe([ans]) |
| 196 | +chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v2")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] |
| 197 | +chkt = timeit.default_timer() - t_start |
| 198 | +print(f"Finished 1st run aggregation in {chkt}") |
| 199 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 200 | +del ans |
| 201 | +gc.collect() |
| 202 | +t_start = timeit.default_timer() |
| 203 | +ans = ctx.sql("SELECT id6, SUM(v1) AS v1, SUM(v2) AS v2, SUM(v3) AS v3 FROM x GROUP BY id6").collect() |
| 204 | +shape = ans_shape(ans) |
| 205 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 206 | +t = timeit.default_timer() - t_start |
| 207 | +m = memory_usage() |
| 208 | +t_start = timeit.default_timer() |
| 209 | +df = ctx.create_dataframe([ans]) |
| 210 | +chk = df.aggregate([], [f.sum(col("v1")), f.sum(col("v2")), f.sum(col("v3"))]).collect()[0].to_pandas().to_numpy()[0] |
| 211 | +chkt = timeit.default_timer() - t_start |
| 212 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 213 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 214 | +del ans |
| 215 | + |
| 216 | +question = "max v1 - min v2 by id3" # q7 |
| 217 | +gc.collect() |
| 218 | +print("\nRunning: " + question, flush=True) |
| 219 | +t_start = timeit.default_timer() |
| 220 | +ans = ctx.sql("SELECT id3, MAX(v1) - MIN(v2) AS range_v1_v2 FROM x GROUP BY id3").collect() |
| 221 | +shape = ans_shape(ans) |
| 222 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 223 | +t = timeit.default_timer() - t_start |
| 224 | +m = memory_usage() |
| 225 | +t_start = timeit.default_timer() |
| 226 | +df = ctx.create_dataframe([ans]) |
| 227 | +chk = df.aggregate([], [f.sum(col("range_v1_v2"))]).collect()[0].column(0)[0] |
| 228 | +chkt = timeit.default_timer() - t_start |
| 229 | +print(f"Finished 1st run aggregation in {chkt}") |
| 230 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 231 | +del ans |
| 232 | +gc.collect() |
| 233 | +t_start = timeit.default_timer() |
| 234 | +ans = ctx.sql("SELECT id3, MAX(v1) - MIN(v2) AS range_v1_v2 FROM x GROUP BY id3").collect() |
| 235 | +shape = ans_shape(ans) |
| 236 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 237 | +t = timeit.default_timer() - t_start |
| 238 | +m = memory_usage() |
| 239 | +t_start = timeit.default_timer() |
| 240 | +df = ctx.create_dataframe([ans]) |
| 241 | +chk = df.aggregate([], [f.sum(col("range_v1_v2"))]).collect()[0].column(0)[0] |
| 242 | +chkt = timeit.default_timer() - t_start |
| 243 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 244 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 245 | +del ans |
| 246 | + |
| 247 | +question = "largest two v3 by id6" # q8 |
| 248 | +gc.collect() |
| 249 | +print("\nRunning: " + question, flush=True) |
| 250 | +t_start = timeit.default_timer() |
| 251 | +ans = ctx.sql("SELECT id6, v3 from (SELECT id6, v3, row_number() OVER (PARTITION BY id6 ORDER BY v3 DESC) AS row FROM x) t WHERE row <= 2").collect() |
| 252 | +shape = ans_shape(ans) |
| 253 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 254 | +t = timeit.default_timer() - t_start |
| 255 | +m = memory_usage() |
| 256 | +t_start = timeit.default_timer() |
| 257 | +df = ctx.create_dataframe([ans]) |
| 258 | +chk = df.aggregate([], [f.sum(col("v3"))]).collect()[0].column(0)[0] |
| 259 | +chkt = timeit.default_timer() - t_start |
| 260 | +print(f"Finished 1st run aggregation in {chkt}") |
| 261 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 262 | +del ans |
| 263 | +gc.collect() |
| 264 | +t_start = timeit.default_timer() |
| 265 | +ans = ctx.sql("SELECT id6, v3 from (SELECT id6, v3, row_number() OVER (PARTITION BY id6 ORDER BY v3 DESC) AS row FROM x) t WHERE row <= 2").collect() |
| 266 | +shape = ans_shape(ans) |
| 267 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 268 | +t = timeit.default_timer() - t_start |
| 269 | +m = memory_usage() |
| 270 | +t_start = timeit.default_timer() |
| 271 | +df = ctx.create_dataframe([ans]) |
| 272 | +chk = df.aggregate([], [f.sum(col("v3"))]).collect()[0].column(0)[0] |
| 273 | +chkt = timeit.default_timer() - t_start |
| 274 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 275 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 276 | +del ans |
| 277 | + |
| 278 | +question = "sum v3 count by id1:id6" # q10 |
| 279 | +gc.collect() |
| 280 | +print("\nRunning: " + question, flush=True) |
| 281 | +t_start = timeit.default_timer() |
| 282 | +ans = ctx.sql("SELECT id1, id2, id3, id4, id5, id6, SUM(v3) as v3, COUNT(*) AS cnt FROM x GROUP BY id1, id2, id3, id4, id5, id6").collect() |
| 283 | +shape = ans_shape(ans) |
| 284 | +print(f"Finished 1st run grouping in {timeit.default_timer() - t_start}") |
| 285 | +t = timeit.default_timer() - t_start |
| 286 | +m = memory_usage() |
| 287 | +t_start = timeit.default_timer() |
| 288 | +df = ctx.create_dataframe([ans]) |
| 289 | +chk = df.aggregate([], [f.sum(col("v3")), f.sum(col("cnt"))]).collect()[0].to_pandas().to_numpy()[0] |
| 290 | +chkt = timeit.default_timer() - t_start |
| 291 | +print(f"Finished 1st run aggregation in {chkt}") |
| 292 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=1, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 293 | +del ans |
| 294 | +gc.collect() |
| 295 | +t_start = timeit.default_timer() |
| 296 | +ans = ctx.sql("SELECT id1, id2, id3, id4, id5, id6, SUM(v3) as v3, COUNT(*) AS cnt FROM x GROUP BY id1, id2, id3, id4, id5, id6").collect() |
| 297 | +shape = ans_shape(ans) |
| 298 | +print(f"Finished 2nd run grouping in {timeit.default_timer() - t_start}") |
| 299 | +t = timeit.default_timer() - t_start |
| 300 | +m = memory_usage() |
| 301 | +t_start = timeit.default_timer() |
| 302 | +df = ctx.create_dataframe([ans]) |
| 303 | +chk = df.aggregate([], [f.sum(col("v3")), f.sum(col("cnt"))]).collect()[0].to_pandas().to_numpy()[0] |
| 304 | +chkt = timeit.default_timer() - t_start |
| 305 | +print(f"Finished 2nd run aggregation in {chkt}") |
| 306 | +write_log(task=task, data=data_name, in_rows=in_rows, question=question, out_rows=shape[0], out_cols=shape[1], solution=solution, version=ver, git=git, fun=fun, run=2, time_sec=t, mem_gb=m, cache=cache, chk=make_chk([chk]), chk_time_sec=chkt, on_disk=on_disk) |
| 307 | + |
| 308 | +print("grouping finished, took %0.fs" % (timeit.default_timer() - task_init), flush=True) |
| 309 | + |
| 310 | +exit(0) |
0 commit comments