@@ -20,7 +20,7 @@ import java.lang.Math.toIntExact
2020
2121import scala .collection .JavaConverters ._
2222
23- import ai .rapids .cudf .{ColumnVector => CudfColumnVector , Table }
23+ import ai .rapids .cudf .{ColumnVector => CudfColumnVector , OrderByArg , Scalar , Table }
2424import com .nvidia .spark .rapids .{GpuBoundReference , GpuColumnVector , GpuExpression , GpuLiteral , RapidsHostColumnVector , SpillableColumnarBatch , SpillPriorities }
2525import com .nvidia .spark .rapids .Arm .{closeOnExcept , withResource }
2626import com .nvidia .spark .rapids .RapidsPluginImplicits .AutoCloseableProducingSeq
@@ -54,12 +54,9 @@ class GpuIcebergPartitioner(val spec: PartitionSpec,
5454 private val partitionExprs : Seq [GpuExpression ] = spec.fields().asScala.map(getPartitionExpr).toSeq
5555
5656 private val keyColNum : Int = spec.fields().size()
57- private val inputColNum : Int = dataSparkType.fields.length
5857
5958 // key column indices in the table: [key columns, input columns]
6059 private val keyColIndices : Array [Int ] = (0 until keyColNum).toArray
61- // input column indices in the table: [key columns, input columns]
62- private val inputColumnIndices : Array [Int ] = (keyColNum until (keyColNum + inputColNum)).toArray
6360
6461 /**
6562 * Make a new table: [key columns, input columns]
@@ -109,7 +106,7 @@ class GpuIcebergPartitioner(val spec: PartitionSpec,
109106 // note: the result does not contain the key columns
110107 val splitRet = withResource(keysAndInputTable) { _ =>
111108 keysAndInputTable.groupBy(keyColIndices : _* )
112- .contiguousSplitGroupsAndGenUniqKeys(inputColumnIndices )
109+ .contiguousSplitGroupsAndGenUniqKeys()
113110 }
114111
115112 // generate results
0 commit comments