|
532 | 532 | { |
533 | 533 | "data": { |
534 | 534 | "text/plain": [ |
535 | | - "{'f': array(0.04609779), 'D*': array(0.01136011), 'D': array(0.00071134)}" |
| 535 | + "{'f': array(0.04609779), 'Dp': array(0.01136011), 'D': array(0.00071134)}" |
536 | 536 | ] |
537 | 537 | }, |
538 | 538 | "execution_count": 15, |
|
569 | 569 | { |
570 | 570 | "data": { |
571 | 571 | "text/plain": [ |
572 | | - "{'f': array(0.04611801), 'D*': array(0.0113541), 'D': array(0.0007113)}" |
| 572 | + "{'f': array(0.04611801), 'Dp': array(0.0113541), 'D': array(0.0007113)}" |
573 | 573 | ] |
574 | 574 | }, |
575 | 575 | "execution_count": 16, |
|
636 | 636 | "#plot the results of algorithm 1\n", |
637 | 637 | "plt.subplot(121)\n", |
638 | 638 | "plt.plot(np.unique(bval),signal_1dir,'x')\n", |
639 | | - "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['D*'])+(1-fit['f'])*np.exp(-np.unique(bval)*fit['D']))\n", |
640 | | - "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['D*']))\n", |
| 639 | + "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['Dp'])+(1-fit['f'])*np.exp(-np.unique(bval)*fit['D']))\n", |
| 640 | + "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['Dp']))\n", |
641 | 641 | "plt.plot(np.unique(bval),(1-fit['f'])*np.exp(-np.unique(bval)*fit['D']))\n", |
642 | | - "plt.legend(['measured data','model fit','D*','D'])\n", |
| 642 | + "plt.legend(['measured data','model fit','Dp','D'])\n", |
643 | 643 | "plt.ylabel('S/S0')\n", |
644 | 644 | "plt.xlabel('b-value [s/mm^2]')\n", |
645 | 645 | "plt.title('algorithm 1')\n", |
|
650 | 650 | "#plot the results of algorithm 2\n", |
651 | 651 | "plt.subplot(122)\n", |
652 | 652 | "plt.plot(np.unique(bval),signal_1dir,'x')\n", |
653 | | - "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['D*'])+(1-fit['f'])*np.exp(-np.unique(bval)*fit['D']))\n", |
654 | | - "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['D*']))\n", |
| 653 | + "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['Dp'])+(1-fit['f'])*np.exp(-np.unique(bval)*fit['D']))\n", |
| 654 | + "plt.plot(np.unique(bval),fit['f']*np.exp(-np.unique(bval)*fit['Dp']))\n", |
655 | 655 | "plt.plot(np.unique(bval),(1-fit['f'])*np.exp(-np.unique(bval)*fit['D']))\n", |
656 | | - "plt.legend(['measured data','model fit','D*','D'])\n", |
| 656 | + "plt.legend(['measured data','model fit','Dp','D'])\n", |
657 | 657 | "plt.ylabel('S/S0')\n", |
658 | 658 | "plt.xlabel('b-value [s/mm^2]')\n", |
659 | 659 | "plt.title('algorithm 2')\n" |
|
818 | 818 | "data": { |
819 | 819 | "text/plain": [ |
820 | 820 | "{'f': array([0., 0., 0., ..., 0., 0., 0.]),\n", |
821 | | - " 'D*': array([0., 0., 0., ..., 0., 0., 0.]),\n", |
| 821 | + " 'Dp': array([0., 0., 0., ..., 0., 0., 0.]),\n", |
822 | 822 | " 'D': array([0., 0., 0., ..., 0., 0., 0.])}" |
823 | 823 | ] |
824 | 824 | }, |
|
0 commit comments