|
| 1 | +import datetime |
| 2 | +import io |
| 3 | +from unittest import TestCase |
| 4 | + |
| 5 | +try: |
| 6 | + import pypmml |
| 7 | + import pandas |
| 8 | +except ImportError: |
| 9 | + pypmml = None |
| 10 | + pandas = None |
| 11 | + |
| 12 | +import aix360.algorithms.rule_induction.trxf.pmml_export.models as models |
| 13 | +import aix360.algorithms.rule_induction.trxf.pmml_export.serializer as serializer |
| 14 | + |
| 15 | + |
| 16 | +class TestNyokaSerializer(TestCase): |
| 17 | + nyokaSerializer = serializer.NyokaSerializer(datetime.datetime.now()) |
| 18 | + |
| 19 | + def setUp(self): |
| 20 | + if pypmml is None or pandas is None: |
| 21 | + self.skipTest('Install pypmml and pandas for integration tests') |
| 22 | + |
| 23 | + def test_serialize_then_predict(self): |
| 24 | + # arrange |
| 25 | + score_card = models.Scorecard( |
| 26 | + models.DataDictionary( |
| 27 | + [ |
| 28 | + models.DataField( |
| 29 | + name='department', dataType=models.DataType.string, optype=models.OpType.categorical), |
| 30 | + models.DataField( |
| 31 | + name='age', dataType=models.DataType.integer, optype=models.OpType.continuous), |
| 32 | + models.DataField( |
| 33 | + name='income', dataType=models.DataType.double, optype=models.OpType.continuous), |
| 34 | + models.DataField( |
| 35 | + name='overallScore', dataType=models.DataType.double, optype=models.OpType.continuous) |
| 36 | + ] |
| 37 | + ), |
| 38 | + miningSchema=models.MiningSchema( |
| 39 | + [ |
| 40 | + models.MiningField(name='department', usageType=models.MiningFieldUsageType.active), |
| 41 | + models.MiningField(name='age', usageType=models.MiningFieldUsageType.active), |
| 42 | + models.MiningField(name='income', usageType=models.MiningFieldUsageType.active), |
| 43 | + models.MiningField(name='overallScore', usageType=models.MiningFieldUsageType.target), |
| 44 | + ] |
| 45 | + ), |
| 46 | + output=models.Output([ |
| 47 | + models.OutputField( |
| 48 | + name='Final Score', |
| 49 | + feature='predictedValue', |
| 50 | + dataType=models.DataType.double, |
| 51 | + optype=models.OpType.continuous) |
| 52 | + ]), |
| 53 | + characteristics=models.Characteristics( |
| 54 | + [ |
| 55 | + models.Characteristic(name='departmentScore', attributes=[ |
| 56 | + models.Attribute( |
| 57 | + score='-9', |
| 58 | + predicate=models.SimplePredicate( |
| 59 | + field='department', operator=models.Operator.isMissing)), |
| 60 | + models.Attribute( |
| 61 | + score='19', |
| 62 | + predicate=models.SimplePredicate( |
| 63 | + field='department', operator=models.Operator.equal, value='marketing')), |
| 64 | + models.Attribute( |
| 65 | + score='3', |
| 66 | + predicate=models.SimplePredicate( |
| 67 | + field='department', operator=models.Operator.equal, value='engineering')), |
| 68 | + models.Attribute( |
| 69 | + score='6', |
| 70 | + predicate=models.SimplePredicate( |
| 71 | + field='department', operator=models.Operator.equal, value='business')), |
| 72 | + models.Attribute( |
| 73 | + score='0', |
| 74 | + predicate=models.TruePredicate()), |
| 75 | + |
| 76 | + ]), |
| 77 | + models.Characteristic( |
| 78 | + name='ageScore', attributes=[ |
| 79 | + models.Attribute( |
| 80 | + score='-1', |
| 81 | + predicate=models.SimplePredicate( |
| 82 | + field='age', operator=models.Operator.isMissing)), |
| 83 | + models.Attribute( |
| 84 | + score='-3', |
| 85 | + predicate=models.SimplePredicate( |
| 86 | + field='age', operator=models.Operator.lessOrEqual, value='18')), |
| 87 | + models.Attribute( |
| 88 | + score='0', |
| 89 | + predicate=models.CompoundPredicate( |
| 90 | + booleanOperator=models.BooleanOperator.and_, |
| 91 | + simplePredicates=[ |
| 92 | + models.SimplePredicate( |
| 93 | + field='age', operator=models.Operator.greaterThan, value='18'), |
| 94 | + models.SimplePredicate( |
| 95 | + field='age', operator=models.Operator.lessOrEqual, value='29')])), |
| 96 | + models.Attribute( |
| 97 | + score='12', |
| 98 | + predicate=models.CompoundPredicate( |
| 99 | + booleanOperator=models.BooleanOperator.and_, |
| 100 | + simplePredicates=[ |
| 101 | + models.SimplePredicate( |
| 102 | + field='age', operator=models.Operator.greaterThan, value='29'), |
| 103 | + models.SimplePredicate( |
| 104 | + field='age', operator=models.Operator.lessOrEqual, value='39')])), |
| 105 | + models.Attribute( |
| 106 | + score='18', |
| 107 | + predicate=models.SimplePredicate( |
| 108 | + field='age', operator=models.Operator.greaterThan, value='39'))]), |
| 109 | + models.Characteristic(name='incomeScore', attributes=[ |
| 110 | + models.Attribute( |
| 111 | + score='3', |
| 112 | + predicate=models.SimplePredicate( |
| 113 | + field='income', operator=models.Operator.isMissing)), |
| 114 | + models.Attribute( |
| 115 | + predicate=models.SimplePredicate( |
| 116 | + field='income', operator=models.Operator.equal, value='1000'), |
| 117 | + score=models.ComplexPartialScore(feature_name='income', multiplier='0.03', constant='11')), |
| 118 | + models.Attribute( |
| 119 | + score='5', |
| 120 | + predicate=models.CompoundPredicate( |
| 121 | + booleanOperator=models.BooleanOperator.and_, |
| 122 | + simplePredicates=[ |
| 123 | + models.SimplePredicate( |
| 124 | + field='income', operator=models.Operator.greaterThan, value='1000'), |
| 125 | + models.SimplePredicate( |
| 126 | + field='income', operator=models.Operator.lessOrEqual, value='2500')])), |
| 127 | + models.Attribute( |
| 128 | + predicate=models.SimplePredicate( |
| 129 | + field='income', operator=models.Operator.greaterThan, value='1500'), |
| 130 | + score=models.ComplexPartialScore( |
| 131 | + feature_name='income', multiplier='0.01', constant='18'))])])) |
| 132 | + |
| 133 | + # when |
| 134 | + serialized = self.nyokaSerializer.serialize(score_card) |
| 135 | + pmml_model = pypmml.Model.load(io.StringIO(serialized)) |
| 136 | + |
| 137 | + # assert |
| 138 | + self.assertIsNotNone(pmml_model) |
| 139 | + self.assertEqual(len(pmml_model.dataDictionary.fields), 4) |
0 commit comments