@@ -11,7 +11,7 @@ The :py:func:`aeppl.logprob.logprob` function can be called on any random variab
1111 import aesara.tensor as at
1212 from aeppl.logprob import _logprob
1313
14- srng = at.random.RandomStream(0 )
14+ srng = at.random.RandomStream()
1515
1616 mu = at.scalar("mu")
1717 sigma = at.scalar("sigma")
@@ -29,7 +29,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
2929
3030 import aesara.tensor as at
3131
32- srng = at.random.RandomStream(0 )
32+ srng = at.random.RandomStream()
3333
3434 p = at.scalar("p")
3535 x_rv = snrg.bernoulli(p)
@@ -43,7 +43,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
4343
4444 import aesara.tensor as at
4545
46- srng = at.random.RandomStream(0 )
46+ srng = at.random.RandomStream()
4747
4848 a = at.scalar("a")
4949 b = at.scalar("b")
@@ -59,7 +59,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
5959
6060 import aesara.tensor as at
6161
62- srng = at.random.RandomStream(0 )
62+ srng = at.random.RandomStream()
6363
6464 n = at.iscalar("n")
6565 a = at.scalar("a")
@@ -76,7 +76,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
7676
7777 import aesara.tensor as at
7878
79- srng = at.random.RandomStream(0 )
79+ srng = at.random.RandomStream()
8080
8181 n = at.iscalar("n")
8282 p = at.scalar("p")
@@ -92,7 +92,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
9292
9393 import aesara.tensor as at
9494
95- srng = at.random.RandomStream(0 )
95+ srng = at.random.RandomStream()
9696
9797 loc = at.scalar("loc")
9898 scale = at.scalar("scale")
@@ -107,7 +107,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
107107
108108 import aesara.tensor as at
109109
110- srng = at.random.RandomStream(0 )
110+ srng = at.random.RandomStream()
111111
112112 p = at.vector("p")
113113 x_rv = snrg.categorical(p)
@@ -121,7 +121,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
121121
122122 import aesara.tensor as at
123123
124- srng = at.random.RandomStream(0 )
124+ srng = at.random.RandomStream()
125125
126126 df = at.scalar("df")
127127 x_rv = snrg.chisquare(df)
@@ -148,7 +148,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
148148
149149 import aesara.tensor as at
150150
151- srng = at.random.RandomStream(0 )
151+ srng = at.random.RandomStream()
152152
153153 alpha = at.vector("alpha")
154154 x_rv = snrg.dirichlet(alpha)
@@ -167,7 +167,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
167167
168168 import aesara.tensor as at
169169
170- srng = at.random.RandomStream(0 )
170+ srng = at.random.RandomStream()
171171
172172 beta = at.scalar("beta")
173173 x_rv = snrg.exponential(beta)
@@ -181,7 +181,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
181181
182182 import aesara.tensor as at
183183
184- srng = at.random.RandomStream(0 )
184+ srng = at.random.RandomStream()
185185
186186 alpha = at.scalar('alpha')
187187 beta = at.scalar('beta')
@@ -196,7 +196,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
196196
197197 import aesara.tensor as at
198198
199- srng = at.random.RandomStream(0 )
199+ srng = at.random.RandomStream()
200200
201201 p = at.scalar("p")
202202 x_rv = snrg.geometric(p)
@@ -210,7 +210,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
210210
211211 import aesara.tensor as at
212212
213- srng = at.random.RandomStream(0 )
213+ srng = at.random.RandomStream()
214214
215215 mu = at.scalar('mu')
216216 beta = at.scalar('beta')
@@ -225,7 +225,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
225225
226226 import aesara.tensor as at
227227
228- srng = at.random.RandomStream(0 )
228+ srng = at.random.RandomStream()
229229
230230 x0 = at.scalar('x0')
231231 gamma = at.scalar('gamma')
@@ -240,7 +240,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
240240
241241 import aesara.tensor as at
242242
243- srng = at.random.RandomStream(0 )
243+ srng = at.random.RandomStream()
244244
245245 mu = at.scalar('mu')
246246 sigma = at.scalar('sigma')
@@ -255,7 +255,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
255255
256256 import aesara.tensor as at
257257
258- srng = at.random.RandomStream(0 )
258+ srng = at.random.RandomStream()
259259
260260 ngood = at.scalar("ngood")
261261 nbad = at.scalar("nbad")
@@ -271,7 +271,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
271271
272272 import aesara.tensor as at
273273
274- srng = at.random.RandomStream(0 )
274+ srng = at.random.RandomStream()
275275
276276 alpha = at.scalar('alpha')
277277 beta = at.scalar('beta')
@@ -286,7 +286,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
286286
287287 import aesara.tensor as at
288288
289- srng = at.random.RandomStream(0 )
289+ srng = at.random.RandomStream()
290290
291291 mu = at.scalar("mu")
292292 lmbda = at.scalar("lambda")
@@ -301,7 +301,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
301301
302302 import aesara.tensor as at
303303
304- srng = at.random.RandomStream(0 )
304+ srng = at.random.RandomStream()
305305
306306 mu = at.scalar("mu")
307307 s = at.scalar("s")
@@ -316,7 +316,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
316316
317317 import aesara.tensor as at
318318
319- srng = at.random.RandomStream(0 )
319+ srng = at.random.RandomStream()
320320
321321 mu = at.scalar("mu")
322322 sigma = at.scalar("sigma")
@@ -331,7 +331,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
331331
332332 import aesara.tensor as at
333333
334- srng = at.random.RandomStream(0 )
334+ srng = at.random.RandomStream()
335335
336336 n = at.iscalar("n")
337337 p = at.vector("p")
@@ -346,7 +346,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
346346
347347 import aesara.tensor as at
348348
349- srng = at.random.RandomStream(0 )
349+ srng = at.random.RandomStream()
350350
351351 mu = at.vector('mu')
352352 Sigma = at.matrix('sigma')
@@ -362,7 +362,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
362362
363363 import aesara.tensor as at
364364
365- srng = at.random.RandomStream(0 )
365+ srng = at.random.RandomStream()
366366
367367 n = at.iscalar("n")
368368 p = at.scalar("p")
@@ -377,7 +377,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
377377
378378 import aesara.tensor as at
379379
380- srng = at.random.RandomStream(0 )
380+ srng = at.random.RandomStream()
381381
382382 mu = at.scalar('mu')
383383 sigma = at.scalar('sigma')
@@ -392,7 +392,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
392392
393393 import aesara.tensor as at
394394
395- srng = at.random.RandomStream(0 )
395+ srng = at.random.RandomStream()
396396
397397 b = at.scalar("b")
398398 scale = at.scalar("scale")
@@ -407,7 +407,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
407407
408408 import aesara.tensor as at
409409
410- srng = at.random.RandomStream(0 )
410+ srng = at.random.RandomStream()
411411
412412 lmbda = at.scalar("lambda")
413413 x_rv = snrg.poisson(lmbda)
@@ -421,7 +421,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
421421
422422 import aesara.tensor as at
423423
424- srng = at.random.RandomStream(0 )
424+ srng = at.random.RandomStream()
425425
426426 df = at.scalar('df')
427427 loc = at.scalar('loc')
@@ -437,7 +437,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
437437
438438 import aesara.tensor as at
439439
440- srng = at.random.RandomStream(0 )
440+ srng = at.random.RandomStream()
441441
442442 left = at.scalar('left')
443443 mode = at.scalar('mode')
@@ -453,7 +453,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
453453
454454 import aesara.tensor as at
455455
456- srng = at.random.RandomStream(0 )
456+ srng = at.random.RandomStream()
457457
458458 low = at.scalar('low')
459459 high = at.scalar('high')
@@ -468,7 +468,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
468468
469469 import aesara.tensor as at
470470
471- srng = at.random.RandomStream(0 )
471+ srng = at.random.RandomStream()
472472
473473 mu = at.scalar('mu')
474474 kappa = at.scalar('kappa')
@@ -483,7 +483,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
483483
484484 import aesara.tensor as at
485485
486- srng = at.random.RandomStream(0 )
486+ srng = at.random.RandomStream()
487487
488488 mu = at.scalar('mu')
489489 lmbda = at.scalar('lambda')
@@ -499,7 +499,7 @@ Documentation for the Aesara implementation can be found here: :external:py:clas
499499
500500 import aesara.tensor as at
501501
502- srng = at.random.RandomStream(0 )
502+ srng = at.random.RandomStream()
503503
504504 k = at.scalar('k')
505505 x_rv = srng.weibull(k)
0 commit comments