Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 13 additions & 1 deletion src/angle_defect.cpp
Original file line number Diff line number Diff line change
@@ -1,9 +1,21 @@
#include "../include/angle_defect.h"
#include "igl/squared_edge_lengths.h"
#include "internal_angles.h"
#include "igl/PI.h"

void angle_defect(
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
Eigen::VectorXd & D)
{
D = Eigen::VectorXd::Zero(V.rows());
Eigen::MatrixXd l_sqr, X;
igl::squared_edge_lengths(V, F, l_sqr);
internal_angles(l_sqr, X);

D = 2 * igl::PI * Eigen::VectorXd::Ones(V.rows());
for (int i = 0; i < F.rows(); i++) {
D(F(i, 0)) += -X(i, 0);
D(F(i, 1)) += -X(i, 1);
D(F(i, 2)) += -X(i, 2);
}
}
7 changes: 6 additions & 1 deletion src/internal_angles.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,10 @@ void internal_angles(
const Eigen::MatrixXd & l_sqr,
Eigen::MatrixXd & A)
{
// Add with your code
A.resize(l_sqr.rows(), l_sqr.cols());
for (int i = 0; i < l_sqr.rows(); i++) {
A(i, 0) = acos((l_sqr(i, 1) + l_sqr(i, 2) - l_sqr(i, 0)) / (2.0 * sqrt(l_sqr(i, 1) * l_sqr(i, 2))));
A(i, 1) = acos((l_sqr(i, 2) + l_sqr(i, 0) - l_sqr(i, 1)) / (2.0 * sqrt(l_sqr(i, 2) * l_sqr(i, 0))));
A(i, 2) = acos((l_sqr(i, 0) + l_sqr(i, 1) - l_sqr(i, 2)) / (2.0 * sqrt(l_sqr(i, 0) * l_sqr(i, 1))));
}
}
24 changes: 22 additions & 2 deletions src/mean_curvature.cpp
Original file line number Diff line number Diff line change
@@ -1,10 +1,30 @@
#include "../include/mean_curvature.h"
#include "igl/cotmatrix.h"
#include "igl/massmatrix.h"
#include "igl/invert_diag.h"
#include "igl/per_vertex_normals.h"

void mean_curvature(
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
Eigen::VectorXd & H)
{
// Replace with your code
H = Eigen::VectorXd::Zero(V.rows());
Eigen::SparseMatrix<double> L, M, M_i;
Eigen::MatrixXd curve_normals, normals;
igl::cotmatrix(V, F, L);
igl::massmatrix(V, F, igl::MASSMATRIX_TYPE_VORONOI, M);
igl::invert_diag(M, M_i);
curve_normals = (M_i * L) * V;
igl::per_vertex_normals(V, F, normals);

H.resize(curve_normals.rows());
for (int i = 0; i < V.rows(); i++) {
H(i) = 0.0;
if ((normals.row(i)).dot(curve_normals.row(i)) > 0) {
H(i) = (curve_normals.row(i)).norm();
}
else if ((normals.row(i)).dot(curve_normals.row(i)) < 0) {
H(i) = - ((curve_normals.row(i)).norm());
}
}
}
67 changes: 62 additions & 5 deletions src/principal_curvatures.cpp
Original file line number Diff line number Diff line change
@@ -1,4 +1,8 @@
#include "../include/principal_curvatures.h"
#include <set>
#include "igl/adjacency_matrix.h"
#include "igl/per_vertex_normals.h"
#include "igl/pinv.h"

void principal_curvatures(
const Eigen::MatrixXd & V,
Expand All @@ -8,9 +12,62 @@ void principal_curvatures(
Eigen::VectorXd & K1,
Eigen::VectorXd & K2)
{
// Replace with your code
K1 = Eigen::VectorXd::Zero(V.rows());
K2 = Eigen::VectorXd::Zero(V.rows());
D1 = Eigen::MatrixXd::Zero(V.rows(),3);
D2 = Eigen::MatrixXd::Zero(V.rows(),3);
K1 = Eigen::VectorXd::Zero(V.rows());
K2 = Eigen::VectorXd::Zero(V.rows());
D1 = Eigen::MatrixXd::Zero(V.rows(),3);
D2 = Eigen::MatrixXd::Zero(V.rows(),3);
Eigen::SparseMatrix<double> Ad;
Eigen::MatrixXd normals;
igl::adjacency_matrix(F, Ad);
igl::per_vertex_normals(V, F, normals);

for (int i = 0; i < V.rows(); i++) {
Eigen::MatrixXd P, X, X_i;
Eigen::VectorXd u, v, w, A;
Eigen::Matrix2d S, S_left, S_right;
std::set<int> neighbour, neighbour2;
for (Eigen::SparseMatrix<double>::InnerIterator it(Ad,i); it; ++it) {
if (it.row() != i) {
neighbour.insert(it.row());
neighbour2.insert(it.row());
}
}
for (int n: neighbour) {
for (Eigen::SparseMatrix<double>::InnerIterator it(Ad,n); it; ++it) {
if (it.row() != n) {
neighbour2.insert(it.row());
}
}
}
P.resize(neighbour2.size(), 3);
int z = 0;
for (int y: neighbour2) {
P.row(z++) = V.row(y) - V.row(i);
}

Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> es(P.transpose() * P);
w = es.eigenvectors().col(0);
v = es.eigenvectors().col(1);
u = es.eigenvectors().col(2);
if (w.dot(normals.row(i)) < 0) w *= -1;
X.resize(P.rows(), 5);
X.col(0) = P * v;
X.col(1) = P * u;
X.col(2) = (X.col(0)).array().square();
X.col(3) = (X.col(0)).array() * (X.col(1)).array();
X.col(4) = (X.col(1)).array().square();
igl::pinv(X, X_i);
A = X_i * (P * w);

double d = sqrt(A(0) * A(0) + 1 + A(1) * A(1));
S_right << (1 + A(0) * A(0)), A(0) * A(1), A(0) * A(1), 1 + A(1) * A(1);
S_left << (2 * A(2) / d), (A(3) / d), (A(3) / d), (2 * A(4) / d);
S = -S_left * S_right.inverse();

Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> es2(S);
K1(i) = es2.eigenvalues()(1);
D1.row(i) = es.eigenvectors()(1, 1) * u + es.eigenvectors()(1, 0) * v;
K2(i) = es2.eigenvalues()(0);
D2.row(i) = es.eigenvectors()(0, 1) * u + es.eigenvectors()(0, 0) * v;
}
}