|
| 1 | +import pytest |
| 2 | +import torch |
| 3 | +from compressed_tensors.quantization import QuantizationArgs, QuantizationScheme |
| 4 | +from llmcompressor import oneshot |
| 5 | +from llmcompressor.modifiers.autoround import AutoRoundModifier |
| 6 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 7 | + |
| 8 | +from auto_round.calib_dataset import get_dataset |
| 9 | + |
| 10 | +recipe_str = """ |
| 11 | +quant_stage: |
| 12 | + quant_modifiers: |
| 13 | + AutoRoundModifier: |
| 14 | + ignore: ["lm_head"] |
| 15 | + iters: 1 |
| 16 | + config_groups: |
| 17 | + group_0: |
| 18 | + targets: |
| 19 | + - "Linear" |
| 20 | + input_activations: null |
| 21 | + output_activations: null |
| 22 | + weights: |
| 23 | + num_bits: 4 |
| 24 | + type: "int" |
| 25 | + symmetric: true |
| 26 | + strategy: group |
| 27 | + group_size: 128 |
| 28 | +""" |
| 29 | + |
| 30 | +recipe_modifier_full = AutoRoundModifier( |
| 31 | + ignore=["lm_head"], |
| 32 | + iters=1, |
| 33 | + config_groups={ |
| 34 | + "group_0": QuantizationScheme( |
| 35 | + targets=["Linear"], |
| 36 | + weights=QuantizationArgs(num_bits=4, strategy="group", group_size=128), |
| 37 | + ) |
| 38 | + }, |
| 39 | +) |
| 40 | + |
| 41 | + |
| 42 | +@pytest.mark.parametrize( |
| 43 | + "recipe", |
| 44 | + [ |
| 45 | + recipe_str, |
| 46 | + recipe_modifier_full, |
| 47 | + ], |
| 48 | +) |
| 49 | +def test_oneshot_application(recipe, tmp_path): |
| 50 | + output = tmp_path / "oneshot_output" |
| 51 | + model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" |
| 52 | + tokenizer = AutoTokenizer.from_pretrained(model) |
| 53 | + dataset = get_dataset( |
| 54 | + tokenizer=tokenizer, |
| 55 | + seqlen=16, |
| 56 | + nsamples=2, |
| 57 | + ) |
| 58 | + device = "cuda:0" if torch.cuda.is_available() else "cpu" |
| 59 | + |
| 60 | + oneshot( |
| 61 | + model=model, |
| 62 | + dataset=dataset, |
| 63 | + output_dir=output, |
| 64 | + recipe=recipe, |
| 65 | + ) |
| 66 | + model_loaded = AutoModelForCausalLM.from_pretrained(output, device_map=device) |
| 67 | + |
| 68 | + # Check that the model is quantized |
| 69 | + # for compression_config - decompress() will attach a quantization_config |
| 70 | + # to the model as we decompress right away |
| 71 | + # for quantization_config - we have CompressedLinear which will only |
| 72 | + # decompress on the forward pass and does not call decompress(). Results |
| 73 | + # in a slightly different parameter tree to access the quant config |
| 74 | + quantization_config = model_loaded.config.quantization_config.quantization_config |
| 75 | + assert quantization_config is not None |
| 76 | + |
| 77 | + # check config is set properly |
| 78 | + assert "lm_head" in quantization_config.ignore |
| 79 | + assert len(quantization_config.config_groups) == 1 |
| 80 | + quant_scheme = quantization_config.config_groups["group_0"] |
| 81 | + assert isinstance(quant_scheme, QuantizationScheme) |
| 82 | + |
| 83 | + weight_args = quantization_config.config_groups["group_0"].weights |
| 84 | + assert isinstance(weight_args, QuantizationArgs) |
| 85 | + assert weight_args.num_bits == 4 |
| 86 | + |
| 87 | + # Check a specific layer is quantized |
| 88 | + targeted_linear_layer = model_loaded.model.layers[2].self_attn.q_proj |
| 89 | + assert hasattr(targeted_linear_layer, "quantization_scheme") |
| 90 | + |
| 91 | + # Check lm-head is not quantized |
| 92 | + not_targeted = model_loaded.lm_head |
| 93 | + assert not hasattr(not_targeted, "quantization_scheme") |
0 commit comments