|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "id": "QKSE19fW_Dnj" |
| 7 | + }, |
| 8 | + "source": [ |
| 9 | + "# DVCLive and Lightning Fabric" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": { |
| 15 | + "id": "q-C_4R_o_QGG" |
| 16 | + }, |
| 17 | + "source": [ |
| 18 | + "## Install dvclive" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": null, |
| 24 | + "metadata": { |
| 25 | + "colab": { |
| 26 | + "base_uri": "https://localhost:8080/" |
| 27 | + }, |
| 28 | + "id": "-XFbvwq7TSwN", |
| 29 | + "outputId": "15d0e3b5-bb4a-4b3e-d37f-21608d1822ed" |
| 30 | + }, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "!pip install \"dvclive[lightning]\"" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "markdown", |
| 38 | + "metadata": { |
| 39 | + "id": "I6S6Uru1_Y0x" |
| 40 | + }, |
| 41 | + "source": [ |
| 42 | + "## Initialize DVC Repository" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "metadata": { |
| 49 | + "colab": { |
| 50 | + "base_uri": "https://localhost:8080/" |
| 51 | + }, |
| 52 | + "id": "WcbvUl2uTV0y", |
| 53 | + "outputId": "aff9740c-26db-483d-ce30-cfef395f3cbb" |
| 54 | + }, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "!git init -q\n", |
| 58 | + "!git config --local user.email \"[email protected]\"\n", |
| 59 | + "!git config --local user.name \"Your Name\"\n", |
| 60 | + "!dvc init -q\n", |
| 61 | + "!git commit -m \"DVC init\"" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "markdown", |
| 66 | + "metadata": { |
| 67 | + "id": "LmY4PLMh_cUk" |
| 68 | + }, |
| 69 | + "source": [ |
| 70 | + "## Imports" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "metadata": { |
| 77 | + "id": "85qErT5yTEbN" |
| 78 | + }, |
| 79 | + "outputs": [], |
| 80 | + "source": [ |
| 81 | + "import argparse\n", |
| 82 | + "from os import path\n", |
| 83 | + "from types import SimpleNamespace\n", |
| 84 | + "\n", |
| 85 | + "import torch\n", |
| 86 | + "import torch.nn as nn\n", |
| 87 | + "import torch.nn.functional as F\n", |
| 88 | + "import torch.optim as optim\n", |
| 89 | + "import torchvision.transforms as T\n", |
| 90 | + "from lightning.fabric import Fabric, seed_everything\n", |
| 91 | + "from lightning.fabric.utilities.rank_zero import rank_zero_only\n", |
| 92 | + "from torch.optim.lr_scheduler import StepLR\n", |
| 93 | + "from torchmetrics.classification import Accuracy\n", |
| 94 | + "from torchvision.datasets import MNIST\n", |
| 95 | + "\n", |
| 96 | + "from dvclive.fabric import DVCLiveLogger\n", |
| 97 | + "\n", |
| 98 | + "DATASETS_PATH = (\"Datasets\")" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "metadata": { |
| 104 | + "id": "UrmAHbhr_lgs" |
| 105 | + }, |
| 106 | + "source": [ |
| 107 | + "## Setup model code\n", |
| 108 | + "\n", |
| 109 | + "Adapted from https://github.com/Lightning-AI/pytorch-lightning/blob/master/examples/fabric/image_classifier/train_fabric.py.\n", |
| 110 | + "\n", |
| 111 | + "Look for the `logger` statements where DVCLiveLogger calls were added." |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": null, |
| 117 | + "metadata": { |
| 118 | + "id": "UCzTygUnTHM8" |
| 119 | + }, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "class Net(nn.Module):\n", |
| 123 | + " def __init__(self) -> None:\n", |
| 124 | + " super().__init__()\n", |
| 125 | + " self.conv1 = nn.Conv2d(1, 32, 3, 1)\n", |
| 126 | + " self.conv2 = nn.Conv2d(32, 64, 3, 1)\n", |
| 127 | + " self.dropout1 = nn.Dropout(0.25)\n", |
| 128 | + " self.dropout2 = nn.Dropout(0.5)\n", |
| 129 | + " self.fc1 = nn.Linear(9216, 128)\n", |
| 130 | + " self.fc2 = nn.Linear(128, 10)\n", |
| 131 | + "\n", |
| 132 | + " def forward(self, x):\n", |
| 133 | + " x = self.conv1(x)\n", |
| 134 | + " x = F.relu(x)\n", |
| 135 | + " x = self.conv2(x)\n", |
| 136 | + " x = F.relu(x)\n", |
| 137 | + " x = F.max_pool2d(x, 2)\n", |
| 138 | + " x = self.dropout1(x)\n", |
| 139 | + " x = torch.flatten(x, 1)\n", |
| 140 | + " x = self.fc1(x)\n", |
| 141 | + " x = F.relu(x)\n", |
| 142 | + " x = self.dropout2(x)\n", |
| 143 | + " x = self.fc2(x)\n", |
| 144 | + " return F.log_softmax(x, dim=1)\n", |
| 145 | + "\n", |
| 146 | + "\n", |
| 147 | + "def run(hparams):\n", |
| 148 | + " # Create the DVCLive Logger\n", |
| 149 | + " logger = DVCLiveLogger(report=\"notebook\")\n", |
| 150 | + "\n", |
| 151 | + " # Log dict of hyperparameters\n", |
| 152 | + " logger.log_hyperparams(hparams.__dict__)\n", |
| 153 | + "\n", |
| 154 | + " # Create the Lightning Fabric object. The parameters like accelerator, strategy, devices etc. will be proided\n", |
| 155 | + " # by the command line. See all options: `lightning run model --help`\n", |
| 156 | + " fabric = Fabric()\n", |
| 157 | + "\n", |
| 158 | + " seed_everything(hparams.seed) # instead of torch.manual_seed(...)\n", |
| 159 | + "\n", |
| 160 | + " transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])\n", |
| 161 | + "\n", |
| 162 | + " # Let rank 0 download the data first, then everyone will load MNIST\n", |
| 163 | + " with fabric.rank_zero_first(local=False): # set `local=True` if your filesystem is not shared between machines\n", |
| 164 | + " train_dataset = MNIST(DATASETS_PATH, download=fabric.is_global_zero, train=True, transform=transform)\n", |
| 165 | + " test_dataset = MNIST(DATASETS_PATH, download=fabric.is_global_zero, train=False, transform=transform)\n", |
| 166 | + "\n", |
| 167 | + " train_loader = torch.utils.data.DataLoader(\n", |
| 168 | + " train_dataset,\n", |
| 169 | + " batch_size=hparams.batch_size,\n", |
| 170 | + " )\n", |
| 171 | + " test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=hparams.batch_size)\n", |
| 172 | + "\n", |
| 173 | + " # don't forget to call `setup_dataloaders` to prepare for dataloaders for distributed training.\n", |
| 174 | + " train_loader, test_loader = fabric.setup_dataloaders(train_loader, test_loader)\n", |
| 175 | + "\n", |
| 176 | + " model = Net() # remove call to .to(device)\n", |
| 177 | + " optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)\n", |
| 178 | + "\n", |
| 179 | + " # don't forget to call `setup` to prepare for model / optimizer for distributed training.\n", |
| 180 | + " # the model is moved automatically to the right device.\n", |
| 181 | + " model, optimizer = fabric.setup(model, optimizer)\n", |
| 182 | + "\n", |
| 183 | + " scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)\n", |
| 184 | + "\n", |
| 185 | + " # use torchmetrics instead of manually computing the accuracy\n", |
| 186 | + " test_acc = Accuracy(task=\"multiclass\", num_classes=10).to(fabric.device)\n", |
| 187 | + "\n", |
| 188 | + " # EPOCH LOOP\n", |
| 189 | + " for epoch in range(1, hparams.epochs + 1):\n", |
| 190 | + " # TRAINING LOOP\n", |
| 191 | + " model.train()\n", |
| 192 | + " for batch_idx, (data, target) in enumerate(train_loader):\n", |
| 193 | + " # NOTE: no need to call `.to(device)` on the data, target\n", |
| 194 | + " optimizer.zero_grad()\n", |
| 195 | + " output = model(data)\n", |
| 196 | + " loss = F.nll_loss(output, target)\n", |
| 197 | + " fabric.backward(loss) # instead of loss.backward()\n", |
| 198 | + "\n", |
| 199 | + " optimizer.step()\n", |
| 200 | + " if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0):\n", |
| 201 | + " print(\n", |
| 202 | + " \"Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}\".format(\n", |
| 203 | + " epoch,\n", |
| 204 | + " batch_idx * len(data),\n", |
| 205 | + " len(train_loader.dataset),\n", |
| 206 | + " 100.0 * batch_idx / len(train_loader),\n", |
| 207 | + " loss.item(),\n", |
| 208 | + " )\n", |
| 209 | + " )\n", |
| 210 | + "\n", |
| 211 | + " # Log dict of metrics\n", |
| 212 | + " logger.log_metrics({\"loss\": loss.item()})\n", |
| 213 | + "\n", |
| 214 | + " if hparams.dry_run:\n", |
| 215 | + " break\n", |
| 216 | + "\n", |
| 217 | + " scheduler.step()\n", |
| 218 | + "\n", |
| 219 | + " # TESTING LOOP\n", |
| 220 | + " model.eval()\n", |
| 221 | + " test_loss = 0\n", |
| 222 | + " with torch.no_grad():\n", |
| 223 | + " for data, target in test_loader:\n", |
| 224 | + " # NOTE: no need to call `.to(device)` on the data, target\n", |
| 225 | + " output = model(data)\n", |
| 226 | + " test_loss += F.nll_loss(output, target, reduction=\"sum\").item()\n", |
| 227 | + "\n", |
| 228 | + " # WITHOUT TorchMetrics\n", |
| 229 | + " # pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability\n", |
| 230 | + " # correct += pred.eq(target.view_as(pred)).sum().item()\n", |
| 231 | + "\n", |
| 232 | + " # WITH TorchMetrics\n", |
| 233 | + " test_acc(output, target)\n", |
| 234 | + "\n", |
| 235 | + " if hparams.dry_run:\n", |
| 236 | + " break\n", |
| 237 | + "\n", |
| 238 | + " # all_gather is used to aggregated the value across processes\n", |
| 239 | + " test_loss = fabric.all_gather(test_loss).sum() / len(test_loader.dataset)\n", |
| 240 | + "\n", |
| 241 | + " print(f\"\\nTest set: Average loss: {test_loss:.4f}, Accuracy: ({100 * test_acc.compute():.0f}%)\\n\")\n", |
| 242 | + "\n", |
| 243 | + " # log additional metrics\n", |
| 244 | + " logger.log_metrics({\"test_loss\": test_loss, \"test_acc\": 100 * test_acc.compute()})\n", |
| 245 | + "\n", |
| 246 | + " test_acc.reset()\n", |
| 247 | + "\n", |
| 248 | + " if hparams.dry_run:\n", |
| 249 | + " break\n", |
| 250 | + "\n", |
| 251 | + " # When using distributed training, use `fabric.save`\n", |
| 252 | + " # to ensure the current process is allowed to save a checkpoint\n", |
| 253 | + " if hparams.save_model:\n", |
| 254 | + " fabric.save(\"mnist_cnn.pt\", model.state_dict())\n", |
| 255 | + "\n", |
| 256 | + " # `logger.experiment` provides access to the `dvclive.Live` instance where you can use additional logging methods.\n", |
| 257 | + " # Check that `rank_zero_only.rank == 0` to avoid logging in other processes.\n", |
| 258 | + " if rank_zero_only.rank == 0:\n", |
| 259 | + " logger.experiment.log_artifact(\"mnist_cnn.pt\")\n", |
| 260 | + "\n", |
| 261 | + " # Call finalize to save final results as a DVC experiment\n", |
| 262 | + " logger.finalize(\"success\")" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "markdown", |
| 267 | + "metadata": { |
| 268 | + "id": "o5_v9lRDAM7l" |
| 269 | + }, |
| 270 | + "source": [ |
| 271 | + "## Train the model" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": null, |
| 277 | + "metadata": { |
| 278 | + "colab": { |
| 279 | + "base_uri": "https://localhost:8080/", |
| 280 | + "height": 1000 |
| 281 | + }, |
| 282 | + "id": "BbCXen1PTM4V", |
| 283 | + "outputId": "b79c90eb-74cc-474d-c0dd-21245064bca8" |
| 284 | + }, |
| 285 | + "outputs": [], |
| 286 | + "source": [ |
| 287 | + "hparams = SimpleNamespace(batch_size=64, epochs=5, lr=1.0, gamma=0.7, dry_run=False, seed=1, log_interval=10, save_model=True)\n", |
| 288 | + "run(hparams)" |
| 289 | + ] |
| 290 | + }, |
| 291 | + { |
| 292 | + "cell_type": "code", |
| 293 | + "execution_count": null, |
| 294 | + "metadata": { |
| 295 | + "id": "DnqCrlbLAopV" |
| 296 | + }, |
| 297 | + "outputs": [], |
| 298 | + "source": [] |
| 299 | + } |
| 300 | + ], |
| 301 | + "metadata": { |
| 302 | + "colab": { |
| 303 | + "provenance": [] |
| 304 | + }, |
| 305 | + "kernelspec": { |
| 306 | + "display_name": "Python 3", |
| 307 | + "name": "python3" |
| 308 | + }, |
| 309 | + "language_info": { |
| 310 | + "name": "python" |
| 311 | + } |
| 312 | + }, |
| 313 | + "nbformat": 4, |
| 314 | + "nbformat_minor": 0 |
| 315 | +} |
0 commit comments