Skip to content

Commit 90f76da

Browse files
committed
Update backend docs.
1 parent 27fa03a commit 90f76da

File tree

1 file changed

+13
-10
lines changed

1 file changed

+13
-10
lines changed

docs/templates/backend.md

Lines changed: 13 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -6,9 +6,9 @@ Keras is a model-level library, providing high-level building blocks for develop
66

77
At this time, Keras has three backend implementations available: the **TensorFlow** backend, the **Theano** backend, and the **CNTK** backend.
88

9-
- [TensorFlow](http://www.tensorflow.org/) is an open-source symbolic tensor manipulation framework developed by Google, Inc.
10-
- [Theano](http://deeplearning.net/software/theano/) is an open-source symbolic tensor manipulation framework developed by LISA/MILA Lab at Université de Montréal.
11-
- [CNTK](https://www.microsoft.com/en-us/cognitive-toolkit/) is an open-source, commercial-grade toolkit for deep learning developed by Microsoft.
9+
- [TensorFlow](http://www.tensorflow.org/) is an open-source symbolic tensor manipulation framework developed by Google.
10+
- [Theano](http://deeplearning.net/software/theano/) is an open-source symbolic tensor manipulation framework developed by LISA Lab at Université de Montréal.
11+
- [CNTK](https://www.microsoft.com/en-us/cognitive-toolkit/) is an open-source toolkit for deep learning developed by Microsoft.
1212

1313
In the future, we are likely to add more backend options.
1414

@@ -22,7 +22,7 @@ If you have run Keras at least once, you will find the Keras configuration file
2222

2323
If it isn't there, you can create it.
2424

25-
**NOTE for Windows Users:** Please change `$HOME` with `%USERPROFILE%`.
25+
**NOTE for Windows Users:** Please replace `$HOME` with `%USERPROFILE%`.
2626

2727
The default configuration file looks like this:
2828

@@ -50,6 +50,8 @@ Using TensorFlow backend.
5050
## keras.json details
5151

5252

53+
The `keras.json` configuration file contains the following settings:
54+
5355
```
5456
{
5557
"image_data_format": "channels_last",
@@ -61,12 +63,12 @@ Using TensorFlow backend.
6163

6264
You can change these settings by editing `$HOME/.keras/keras.json`.
6365

64-
* `image_data_format`: string, either `"channels_last"` or `"channels_first"`. It specifies which data format convention Keras will follow. (`keras.backend.image_data_format()` returns it.)
66+
* `image_data_format`: String, either `"channels_last"` or `"channels_first"`. It specifies which data format convention Keras will follow. (`keras.backend.image_data_format()` returns it.)
6567
- For 2D data (e.g. image), `"channels_last"` assumes `(rows, cols, channels)` while `"channels_first"` assumes `(channels, rows, cols)`.
6668
- For 3D data, `"channels_last"` assumes `(conv_dim1, conv_dim2, conv_dim3, channels)` while `"channels_first"` assumes `(channels, conv_dim1, conv_dim2, conv_dim3)`.
67-
* `epsilon`: float, a numeric fuzzing constant used to avoid dividing by zero in some operations.
68-
* `floatx`: string, `"float16"`, `"float32"`, or `"float64"`. Default float precision.
69-
* `backend`: string, `"tensorflow"`, `"theano"`, or `"cntk"`.
69+
* `epsilon`: Float, a numeric fuzzing constant used to avoid dividing by zero in some operations.
70+
* `floatx`: String, `"float16"`, `"float32"`, or `"float64"`. Default float precision.
71+
* `backend`: String, `"tensorflow"`, `"theano"`, or `"cntk"`.
7072

7173
----
7274

@@ -89,7 +91,7 @@ inputs = K.placeholder(shape=(None, 4, 5))
8991
inputs = K.placeholder(ndim=3)
9092
```
9193

92-
The code below instantiates a shared variable. It's equivalent to `tf.Variable()` or `th.shared()`.
94+
The code below instantiates a variable. It's equivalent to `tf.Variable()` or `th.shared()`.
9395

9496
```python
9597
import numpy as np
@@ -109,7 +111,8 @@ Most tensor operations you will need can be done as you would in TensorFlow or T
109111
b = K.random_uniform_variable(shape=(3, 4)). # Uniform distribution
110112
c = K.random_normal_variable(shape=(3, 4)). # Gaussian distribution
111113
d = K.random_normal_variable(shape=(3, 4)).
112-
# Tensor Arithmetics
114+
115+
# Tensor Arithmetic
113116
a = b + c * K.abs(d)
114117
c = K.dot(a, K.transpose(b))
115118
a = K.sum(b, axis=1)

0 commit comments

Comments
 (0)