|
| 1 | +// Copyright 2006 The Android Open Source Project |
| 2 | +// Copyright 2020 Yevhenii Reizner |
| 3 | +// Copyright 2024 Jeremy James |
| 4 | +// |
| 5 | +// Use of this source code is governed by a BSD-style license that can be |
| 6 | +// found in the LICENSE file. |
| 7 | + |
| 8 | +use alloc::vec::Vec; |
| 9 | + |
| 10 | +use crate::pixmap::{Pixmap, PixmapRef}; |
| 11 | +use crate::PremultipliedColorU8; |
| 12 | + |
| 13 | +#[cfg(all(not(feature = "std"), feature = "no-std-float"))] |
| 14 | +use tiny_skia_path::NoStdFloat; |
| 15 | + |
| 16 | +/// Mipmaps are used to scaling down source images quickly to be used instead |
| 17 | +/// of a pixmap as source for bilinear or bicubic scaling |
| 18 | +/// |
| 19 | +/// These are created from a `PixmapRef` as a base source which can be fetched |
| 20 | +/// using level `0` |
| 21 | +/// |
| 22 | +#[derive(Debug)] |
| 23 | +pub struct Mipmaps<'a> { |
| 24 | + levels: Vec<Pixmap>, |
| 25 | + base_pixmap: PixmapRef<'a>, |
| 26 | +} |
| 27 | + |
| 28 | +impl<'a> Mipmaps<'a> { |
| 29 | + /// Allocates a new set of mipmaps from a base pixmap |
| 30 | + pub fn new(p: PixmapRef<'a>) -> Self { |
| 31 | + Mipmaps { |
| 32 | + levels: Vec::new(), |
| 33 | + base_pixmap: p, |
| 34 | + } |
| 35 | + } |
| 36 | + |
| 37 | + /// Fetch a mipmap to be used - or base pixmap if zero is given |
| 38 | + pub fn get(&self, level: usize) -> PixmapRef { |
| 39 | + return if level > 0 { |
| 40 | + self.levels.get(level - 1).unwrap().as_ref() |
| 41 | + } else { |
| 42 | + self.base_pixmap |
| 43 | + }; |
| 44 | + } |
| 45 | + |
| 46 | + /// Ensure this many levels of mipmap are available, returning |
| 47 | + /// an index to be used with get() |
| 48 | + pub fn build(&mut self, required_levels: usize) -> usize { |
| 49 | + let mut src_level = self.levels.len(); |
| 50 | + let mut src_pixmap = self.get(src_level); |
| 51 | + let mut level_width = src_pixmap.width(); |
| 52 | + let mut level_height = src_pixmap.height(); |
| 53 | + |
| 54 | + while src_level < required_levels { |
| 55 | + level_width = (level_width as f32 / 2.0).floor() as u32; |
| 56 | + level_height = (level_height as f32 / 2.0).floor() as u32; |
| 57 | + |
| 58 | + // Scale image down |
| 59 | + let mut dst_pixmap = Pixmap::new(level_width, level_height).unwrap(); |
| 60 | + let dst_width = dst_pixmap.width() as usize; |
| 61 | + let dst_height = dst_pixmap.height() as usize; |
| 62 | + let dst_pixels = dst_pixmap.pixels_mut(); |
| 63 | + |
| 64 | + let src_pixels = src_pixmap.pixels(); |
| 65 | + let src_width = src_pixmap.width() as usize; |
| 66 | + let src_height = src_pixmap.height() as usize; |
| 67 | + |
| 68 | + // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) |
| 69 | + // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) |
| 70 | + // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, |
| 71 | + // else for even cases, we just use a 2x box filter. |
| 72 | + // |
| 73 | + // This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of |
| 74 | + // src pixels we need to sample in each dimension to produce 1 dst pixel. |
| 75 | + let mut downsample: fn( |
| 76 | + &[PremultipliedColorU8], |
| 77 | + usize, |
| 78 | + usize, |
| 79 | + &mut [PremultipliedColorU8], |
| 80 | + usize, |
| 81 | + usize, |
| 82 | + ) = downsample_2_2; |
| 83 | + |
| 84 | + if src_height & 1 == 1 { |
| 85 | + if src_width & 1 == 1 { |
| 86 | + downsample = downsample_3_3; |
| 87 | + } else { |
| 88 | + downsample = downsample_2_3; |
| 89 | + } |
| 90 | + } else { |
| 91 | + if src_width & 1 == 1 { |
| 92 | + downsample = downsample_3_2; |
| 93 | + } |
| 94 | + } |
| 95 | + |
| 96 | + let mut src_y = 0; |
| 97 | + for dst_y in 0..dst_height { |
| 98 | + downsample(src_pixels, src_y, src_width, dst_pixels, dst_y, dst_width); |
| 99 | + src_y += 2; |
| 100 | + } |
| 101 | + |
| 102 | + self.levels.push(dst_pixmap); |
| 103 | + src_pixmap = self.levels.get(src_level).unwrap().as_ref(); |
| 104 | + src_level += 1; |
| 105 | + } |
| 106 | + |
| 107 | + src_level |
| 108 | + } |
| 109 | +} |
| 110 | + |
| 111 | +/// Determine how many Mipmap levels will be needed for a given source and |
| 112 | +/// a given (approximate) scaling being applied to the source |
| 113 | +/// |
| 114 | +/// Return the number of levels, and a pre-scale that should be applied to |
| 115 | +/// a transform that will 'correct' it to the right size of source |
| 116 | +/// |
| 117 | +/// Note that this is different from Skia since only required levels will |
| 118 | +/// be generated |
| 119 | +pub fn compute_required_levels( |
| 120 | + base_pixmap: PixmapRef, |
| 121 | + scale_x: f32, |
| 122 | + scale_y: f32, |
| 123 | +) -> (usize, f32, f32) { |
| 124 | + let mut required_levels: usize = 0; |
| 125 | + let mut level_width = base_pixmap.width(); |
| 126 | + let mut level_height = base_pixmap.height(); |
| 127 | + let mut prescale_x: f32 = 1.0; |
| 128 | + let mut prescale_y: f32 = 1.0; |
| 129 | + |
| 130 | + // Keep generating levels whilst required scale is |
| 131 | + // smaller than half of previous level size |
| 132 | + while scale_x * prescale_x < 0.5 |
| 133 | + && level_width > 1 |
| 134 | + && scale_y * prescale_y < 0.5 |
| 135 | + && level_height > 1 |
| 136 | + { |
| 137 | + required_levels += 1; |
| 138 | + level_width = (level_width as f32 / 2.0).floor() as u32; |
| 139 | + level_height = (level_height as f32 / 2.0).floor() as u32; |
| 140 | + prescale_x = base_pixmap.width() as f32 / level_width as f32; |
| 141 | + prescale_y = base_pixmap.height() as f32 / level_height as f32; |
| 142 | + } |
| 143 | + |
| 144 | + (required_levels, prescale_x, prescale_y) |
| 145 | +} |
| 146 | + |
| 147 | +// Downsamples to match Skia (non-SIMD) |
| 148 | +macro_rules! sum_channel { |
| 149 | + ($channel:ident, $($p:ident),+ ) => { |
| 150 | + 0u16 $( + $p.$channel() as u16 )+ |
| 151 | + }; |
| 152 | +} |
| 153 | + |
| 154 | +fn downsample_2_2( |
| 155 | + src_pixels: &[PremultipliedColorU8], |
| 156 | + src_y: usize, |
| 157 | + src_width: usize, |
| 158 | + dst_pixels: &mut [PremultipliedColorU8], |
| 159 | + dst_y: usize, |
| 160 | + dst_width: usize, |
| 161 | +) { |
| 162 | + let mut src_x = 0; |
| 163 | + for dst_x in 0..dst_width { |
| 164 | + let p1 = src_pixels[src_y * src_width + src_x]; |
| 165 | + let p2 = src_pixels[src_y * src_width + src_x + 1]; |
| 166 | + let p3 = src_pixels[(src_y + 1) * src_width + src_x]; |
| 167 | + let p4 = src_pixels[(src_y + 1) * src_width + src_x + 1]; |
| 168 | + |
| 169 | + let r = (sum_channel!(red, p1, p2, p3, p4) >> 2) as u8; |
| 170 | + let g = (sum_channel!(green, p1, p2, p3, p4) >> 2) as u8; |
| 171 | + let b = (sum_channel!(blue, p1, p2, p3, p4) >> 2) as u8; |
| 172 | + let a = (sum_channel!(alpha, p1, p2, p3, p4) >> 2) as u8; |
| 173 | + dst_pixels[dst_y * dst_width + dst_x] = |
| 174 | + PremultipliedColorU8::from_rgba_unchecked(r, g, b, a); |
| 175 | + |
| 176 | + src_x += 2; |
| 177 | + } |
| 178 | +} |
| 179 | + |
| 180 | +fn downsample_2_3( |
| 181 | + src_pixels: &[PremultipliedColorU8], |
| 182 | + src_y: usize, |
| 183 | + src_width: usize, |
| 184 | + dst_pixels: &mut [PremultipliedColorU8], |
| 185 | + dst_y: usize, |
| 186 | + dst_width: usize, |
| 187 | +) { |
| 188 | + // Given pixels: |
| 189 | + // a0 b0 c0 d0 ... |
| 190 | + // a1 b1 c1 d1 ... |
| 191 | + // a2 b2 c2 d2 ... |
| 192 | + // We want: |
| 193 | + // (a0 + 2*a1 + a2 + b0 + 2*b1 + b2) / 8 |
| 194 | + // (c0 + 2*c1 + c2 + d0 + 2*d1 + d2) / 8 |
| 195 | + // ... |
| 196 | + |
| 197 | + let mut src_x = 0; |
| 198 | + for dst_x in 0..dst_width { |
| 199 | + let p1 = src_pixels[src_y * src_width + src_x]; |
| 200 | + let p2 = src_pixels[src_y * src_width + src_x + 1]; |
| 201 | + let p3 = src_pixels[(src_y + 1) * src_width + src_x]; |
| 202 | + let p4 = src_pixels[(src_y + 1) * src_width + src_x + 1]; |
| 203 | + let p5 = src_pixels[(src_y + 2) * src_width + src_x]; |
| 204 | + let p6 = src_pixels[(src_y + 2) * src_width + src_x + 1]; |
| 205 | + |
| 206 | + let r = (sum_channel!(red, p1, p3, p3, p5, p2, p4, p4, p6) >> 3) as u8; |
| 207 | + let g = (sum_channel!(green, p1, p3, p3, p5, p2, p4, p4, p6) >> 3) as u8; |
| 208 | + let b = (sum_channel!(blue, p1, p3, p3, p5, p2, p4, p4, p6) >> 3) as u8; |
| 209 | + let a = (sum_channel!(alpha, p1, p3, p3, p5, p2, p4, p4, p6) >> 3) as u8; |
| 210 | + dst_pixels[dst_y * dst_width + dst_x] = |
| 211 | + PremultipliedColorU8::from_rgba_unchecked(r, g, b, a); |
| 212 | + |
| 213 | + src_x += 2; |
| 214 | + } |
| 215 | +} |
| 216 | + |
| 217 | +fn downsample_3_2( |
| 218 | + src_pixels: &[PremultipliedColorU8], |
| 219 | + src_y: usize, |
| 220 | + src_width: usize, |
| 221 | + dst_pixels: &mut [PremultipliedColorU8], |
| 222 | + dst_y: usize, |
| 223 | + dst_width: usize, |
| 224 | +) { |
| 225 | + // Given pixels: |
| 226 | + // a0 b0 c0 d0 e0 ... |
| 227 | + // a1 b1 c1 d1 e1 ... |
| 228 | + // We want: |
| 229 | + // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 |
| 230 | + // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 |
| 231 | + // ... |
| 232 | + |
| 233 | + let mut src_x = 0; |
| 234 | + for dst_x in 0..dst_width { |
| 235 | + let p1 = src_pixels[src_y * src_width + src_x]; |
| 236 | + let p2 = src_pixels[src_y * src_width + src_x + 1]; |
| 237 | + let p3 = src_pixels[src_y * src_width + src_x + 2]; |
| 238 | + let p4 = src_pixels[(src_y + 1) * src_width + src_x]; |
| 239 | + let p5 = src_pixels[(src_y + 1) * src_width + src_x + 1]; |
| 240 | + let p6 = src_pixels[(src_y + 1) * src_width + src_x + 2]; |
| 241 | + |
| 242 | + let r = (sum_channel!(red, p1, p2, p2, p3, p4, p5, p5, p6) >> 3) as u8; |
| 243 | + let g = (sum_channel!(green, p1, p2, p2, p3, p4, p5, p5, p6) >> 3) as u8; |
| 244 | + let b = (sum_channel!(blue, p1, p2, p2, p3, p4, p5, p5, p6) >> 3) as u8; |
| 245 | + let a = (sum_channel!(alpha, p1, p2, p2, p3, p4, p5, p5, p6) >> 3) as u8; |
| 246 | + dst_pixels[dst_y * dst_width + dst_x] = |
| 247 | + PremultipliedColorU8::from_rgba_unchecked(r, g, b, a); |
| 248 | + |
| 249 | + src_x += 2; |
| 250 | + } |
| 251 | +} |
| 252 | + |
| 253 | +fn downsample_3_3( |
| 254 | + src_pixels: &[PremultipliedColorU8], |
| 255 | + src_y: usize, |
| 256 | + src_width: usize, |
| 257 | + dst_pixels: &mut [PremultipliedColorU8], |
| 258 | + dst_y: usize, |
| 259 | + dst_width: usize, |
| 260 | +) { |
| 261 | + // Given pixels: |
| 262 | + // a0 b0 c0 d0 e0 ... |
| 263 | + // a1 b1 c1 d1 e1 ... |
| 264 | + // a2 b2 c2 d2 e2 ... |
| 265 | + // We want: |
| 266 | + // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 |
| 267 | + // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 |
| 268 | + // ... |
| 269 | + |
| 270 | + let mut src_x = 0; |
| 271 | + for dst_x in 0..dst_width { |
| 272 | + let p1 = src_pixels[src_y * src_width + src_x]; |
| 273 | + let p2 = src_pixels[src_y * src_width + src_x + 1]; |
| 274 | + let p3 = src_pixels[src_y * src_width + src_x + 2]; |
| 275 | + let p4 = src_pixels[(src_y + 1) * src_width + src_x]; |
| 276 | + let p5 = src_pixels[(src_y + 1) * src_width + src_x + 1]; |
| 277 | + let p6 = src_pixels[(src_y + 1) * src_width + src_x + 2]; |
| 278 | + let p7 = src_pixels[(src_y + 2) * src_width + src_x]; |
| 279 | + let p8 = src_pixels[(src_y + 2) * src_width + src_x + 1]; |
| 280 | + let p9 = src_pixels[(src_y + 2) * src_width + src_x + 2]; |
| 281 | + |
| 282 | + let r = (sum_channel!(red, p1, p2, p2, p3, p4, p4, p5, p5, p5, p5, p6, p6, p7, p8, p8, p9) |
| 283 | + >> 4) as u8; |
| 284 | + let g = |
| 285 | + (sum_channel!(green, p1, p2, p2, p3, p4, p4, p5, p5, p5, p5, p6, p6, p7, p8, p8, p9) |
| 286 | + >> 4) as u8; |
| 287 | + let b = (sum_channel!(blue, p1, p2, p2, p3, p4, p4, p5, p5, p5, p5, p6, p6, p7, p8, p8, p9) |
| 288 | + >> 4) as u8; |
| 289 | + let a = |
| 290 | + (sum_channel!(alpha, p1, p2, p2, p3, p4, p4, p5, p5, p5, p5, p6, p6, p7, p8, p8, p9) |
| 291 | + >> 4) as u8; |
| 292 | + dst_pixels[dst_y * dst_width + dst_x] = |
| 293 | + PremultipliedColorU8::from_rgba_unchecked(r, g, b, a); |
| 294 | + |
| 295 | + src_x += 2; |
| 296 | + } |
| 297 | +} |
0 commit comments