|
4 | 4 | # SPDX-License-Identifier: BSD-3-Clause |
5 | 5 | # |
6 | 6 | # ----------------------------------------------------------------------------- |
| 7 | + |
| 8 | +import logging |
| 9 | +from abc import ABC, abstractmethod |
| 10 | +from typing import Any, Dict, Optional, Type |
| 11 | + |
| 12 | +import torch |
| 13 | +import torch.nn as nn |
| 14 | +from transformers import AutoTokenizer, BitsAndBytesConfig |
| 15 | +import transformers |
| 16 | + |
| 17 | +from QEfficient.finetune.experimental.core.component_registry import registry |
| 18 | +from QEfficient.finetune.experimental.utils.dataset_helper import insert_pad_token |
| 19 | + |
| 20 | +logger = get_logger(__name__) |
| 21 | + |
| 22 | + |
| 23 | +class BaseModel(nn.Module, ABC): |
| 24 | + """Shared skeleton for every finetunable model in the system.""" |
| 25 | + |
| 26 | + def __init__(self, model_name: str, **model_kwargs: Any) -> None: |
| 27 | + super().__init__() |
| 28 | + self.model_name = model_name |
| 29 | + self.model_kwargs: Dict[str, Any] = model_kwargs |
| 30 | + self._model: Optional[nn.Module] = None |
| 31 | + self._tokenizer: Any = None # HF tokenizers are not nn.Modules. |
| 32 | + |
| 33 | + # Factory constructor: load model after __init__ finishes |
| 34 | + @classmethod |
| 35 | + def create(cls, model_name: str, **model_kwargs: Any) -> "BaseModel": |
| 36 | + obj = cls(model_name, **model_kwargs) |
| 37 | + module = obj.load_model() |
| 38 | + if not isinstance(module, nn.Module): |
| 39 | + raise TypeError(f"load_model() must return nn.Module, got {type(module)}") |
| 40 | + obj._model = module |
| 41 | + obj.add_module("_wrapped_model", module) # register |
| 42 | + return obj |
| 43 | + |
| 44 | + @abstractmethod |
| 45 | + def load_model(self) -> nn.Module: |
| 46 | + """Create and return the underlying torch.nn.Module.""" |
| 47 | + ... |
| 48 | + |
| 49 | + def load_tokenizer(self) -> Any: |
| 50 | + """Override if the model exposes a tokenizer.""" |
| 51 | + raise NotImplementedError(f"{type(self).__name__} does not provide a tokenizer.") |
| 52 | + |
| 53 | + # Lazy accessors |
| 54 | + @property |
| 55 | + def model(self) -> nn.Module: |
| 56 | + if self._model is None: |
| 57 | + raise RuntimeError("Model not loaded; use .create(...) to load.") |
| 58 | + return self._model |
| 59 | + |
| 60 | + @property |
| 61 | + def tokenizer(self) -> Any: |
| 62 | + if self._tokenizer is None: |
| 63 | + self._tokenizer = self.load_tokenizer() |
| 64 | + return self._tokenizer |
| 65 | + |
| 66 | + # nn.Module API surface |
| 67 | + def forward(self, *args, **kwargs): |
| 68 | + return self.model(*args, **kwargs) |
| 69 | + |
| 70 | + def get_input_embeddings(self): |
| 71 | + if hasattr(self.model, "get_input_embeddings"): |
| 72 | + return self.model.get_input_embeddings() |
| 73 | + logger.log_rank_zero(f"Model {self.model_name} does not expose input embeddings", logging.WARNING) |
| 74 | + return None |
| 75 | + |
| 76 | + def resize_token_embeddings(self, new_num_tokens: int) -> None: |
| 77 | + if hasattr(self.model, "resize_token_embeddings"): |
| 78 | + self.model.resize_token_embeddings(new_num_tokens) |
| 79 | + else: |
| 80 | + logger.log_rank_zero(f"Model {self.model_name} cannot resize token embeddings", logging.WARNING) |
| 81 | + |
| 82 | + # optional |
| 83 | + def to(self, *args, **kwargs): |
| 84 | + self.model.to(*args, **kwargs) |
| 85 | + return self |
| 86 | + |
| 87 | + def train(self, mode: bool = True): |
| 88 | + self.model.train(mode) |
| 89 | + return super().train(mode) |
| 90 | + |
| 91 | + def eval(self): |
| 92 | + return self.train(False) |
| 93 | + |
| 94 | + |
| 95 | +@registry.model("hf") |
| 96 | +class HFModel(BaseModel): |
| 97 | + """HuggingFace-backed model with optional quantization.""" |
| 98 | + |
| 99 | + def __init__( |
| 100 | + self, |
| 101 | + model_name: str, |
| 102 | + auto_class_name: str = "AutoModelForCausalLM", |
| 103 | + *, |
| 104 | + tokenizer_name: Optional[str] = None, |
| 105 | + **model_kwargs: Any, |
| 106 | + ) -> None: |
| 107 | + super().__init__(model_name, **model_kwargs) |
| 108 | + self.tokenizer_name = tokenizer_name or model_name |
| 109 | + self.auto_class: Type = self._resolve_auto_class(auto_class_name) |
| 110 | + |
| 111 | + @staticmethod |
| 112 | + def _resolve_auto_class(auto_class_name: str) -> Type: |
| 113 | + if not hasattr(transformers, auto_class_name): |
| 114 | + candidates = sorted(name for name in dir(transformers) if name.startswith("AutoModel")) |
| 115 | + raise ValueError( |
| 116 | + f"Unsupported Auto class '{auto_class_name}'. Available candidates: {', '.join(candidates)}" |
| 117 | + ) |
| 118 | + return getattr(transformers, auto_class_name) |
| 119 | + |
| 120 | + # def _build_quant_config(self) -> Optional[BitsAndBytesConfig]: |
| 121 | + # if not self.model_kwargs.get("load_in_4bit"): |
| 122 | + # return None |
| 123 | + # return BitsAndBytesConfig( |
| 124 | + # load_in_4bit=True, |
| 125 | + # bnb_4bit_quant_type=self.model_kwargs.get("bnb_4bit_quant_type", "nf4"), |
| 126 | + # bnb_4bit_compute_dtype=self.model_kwargs.get("bnb_4bit_compute_dtype", torch.float16), |
| 127 | + # bnb_4bit_use_double_quant=self.model_kwargs.get("bnb_4bit_use_double_quant", True), |
| 128 | + # ) |
| 129 | + |
| 130 | + def configure_model_kwargs(self) -> Dict[str, Any]: |
| 131 | + """Hook for subclasses to tweak HF `.from_pretrained` kwargs.""" |
| 132 | + extra = dict(self.model_kwargs) |
| 133 | + # extra["quantization_config"] = self._build_quant_config() |
| 134 | + return extra |
| 135 | + |
| 136 | + def load_model(self) -> nn.Module: |
| 137 | + logger.log_rank_zero(f"Loading HuggingFace model '{self.model_name}' via {self.auto_class.__name__}") |
| 138 | + |
| 139 | + return self.auto_class.from_pretrained( |
| 140 | + self.model_name, |
| 141 | + **self.configure_model_kwargs(), |
| 142 | + ) |
| 143 | + |
| 144 | + def load_tokenizer(self) -> AutoTokenizer: |
| 145 | + """Load Hugging Face tokenizer.""" |
| 146 | + logger.log_rank_zero(f"Loading tokenizer '{self.tokenizer_name}'") |
| 147 | + tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name) |
| 148 | + insert_pad_token(tokenizer) |
| 149 | + return tokenizer |
0 commit comments