diff --git a/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst b/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst index 80b06ebff7..a93b4cbb18 100644 --- a/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst +++ b/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst @@ -47,6 +47,8 @@ Add vision pose measurements occasionally by calling ``AddVisionMeasurement()``. :lines: 93-106 :lineno-match: +.. seealso:: For detailed information about obtaining vision measurements from AprilTags, see :doc:`/docs/software/vision-processing/apriltag/apriltag-pose-estimation`. + ## Tuning Pose Estimators All pose estimators offer user-customizable standard deviations for model and measurements (defaults are used if you don't provide them). Standard deviation is a measure of how spread out the noise is for a random signal. Giving a state a smaller standard deviation means it will be trusted more during data fusion. diff --git a/source/docs/software/vision-processing/apriltag/apriltag-pose-estimation.rst b/source/docs/software/vision-processing/apriltag/apriltag-pose-estimation.rst new file mode 100644 index 0000000000..b5c470397a --- /dev/null +++ b/source/docs/software/vision-processing/apriltag/apriltag-pose-estimation.rst @@ -0,0 +1,329 @@ +# Using AprilTags for Pose Estimation + +AprilTag detection is most commonly used to help your robot determine its position on the field. This article explains how to obtain vision measurements from AprilTags and use them with WPILib's pose estimators. + +## Overview + +The process of using AprilTags for pose estimation involves: + +1. **Detect AprilTags**: Use a vision solution to detect AprilTags on the field +2. **Get Tag Pose**: Look up the known field position of the detected tag from the ``AprilTagFieldLayout`` +3. **Calculate Robot Pose**: Use the camera-to-tag transform and camera-to-robot transform to calculate where the robot is on the field +4. **Apply Measurement**: Pass the calculated pose to your pose estimator using ``AddVisionMeasurement()`` + +## Using Vision Libraries + +Most teams use existing vision processing libraries that handle the complex mathematics for you. Before using these libraries in your robot code, you'll need to configure the vision coprocessor to detect AprilTags. See the `PhotonVision AprilTag documentation `__ or `Limelight AprilTag documentation `__ for setup instructions. + +### PhotonVision + +PhotonVision provides the ``PhotonPoseEstimator`` class which simplifies the entire process: + +.. tab-set-code:: + + ```java + import org.photonvision.PhotonPoseEstimator; + import org.photonvision.PhotonPoseEstimator.PoseStrategy; + + // Create the pose estimator + PhotonPoseEstimator photonPoseEstimator = new PhotonPoseEstimator( + fieldLayout, // AprilTagFieldLayout + PoseStrategy.MULTI_TAG_PNP_ON_COPROCESSOR, + camera, // PhotonCamera + robotToCam // Transform3d from robot to camera + ); + + // In your periodic method + var result = photonPoseEstimator.update(); + if (result.isPresent()) { + var estimatedPose = result.get(); + poseEstimator.addVisionMeasurement( + estimatedPose.estimatedPose.toPose2d(), + estimatedPose.timestampSeconds + ); + } + ``` + + ```c++ + #include + + // Create the pose estimator + photon::PhotonPoseEstimator photonPoseEstimator{ + fieldLayout, // frc::AprilTagFieldLayout + photon::PoseStrategy::MULTI_TAG_PNP_ON_COPROCESSOR, + camera, // photon::PhotonCamera + robotToCam // frc::Transform3d from robot to camera + }; + + // In your periodic method + auto result = photonPoseEstimator.Update(); + if (result) { + poseEstimator.AddVisionMeasurement( + result->estimatedPose.ToPose2d(), + result->timestamp + ); + } + ``` + + ```python + from photonlibpy.photonPoseEstimator import PhotonPoseEstimator, PoseStrategy + + # Create the pose estimator + photon_pose_estimator = PhotonPoseEstimator( + field_layout, # AprilTagFieldLayout + PoseStrategy.MULTI_TAG_PNP_ON_COPROCESSOR, + camera, # PhotonCamera + robot_to_cam # Transform3d from robot to camera + ) + + # In your periodic method + result = photon_pose_estimator.update() + if result is not None: + pose_estimator.addVisionMeasurement( + result.estimatedPose.toPose2d(), + result.timestamp + ) + ``` + +See the `PhotonVision documentation `_ for complete details. + +### Limelight + +Limelight cameras with MegaTag provide robot poses directly through NetworkTables: + +.. tab-set-code:: + + ```java + import edu.wpi.first.networktables.NetworkTable; + import edu.wpi.first.networktables.NetworkTableInstance; + + NetworkTable limelightTable = NetworkTableInstance.getDefault().getTable("limelight"); + + // In your periodic method + double[] botpose = limelightTable.getEntry("botpose_wpiblue").getDoubleArray(new double[6]); + if (botpose.length > 0 && botpose[0] != 0.0) { + Pose2d visionPose = new Pose2d(botpose[0], botpose[1], Rotation2d.fromDegrees(botpose[5])); + double latency = limelightTable.getEntry("tl").getDouble(0) + limelightTable.getEntry("cl").getDouble(0); + double timestamp = Timer.getFPGATimestamp() - (latency / 1000.0); + + poseEstimator.addVisionMeasurement(visionPose, timestamp); + } + ``` + + ```c++ + #include + #include + + auto limelightTable = nt::NetworkTableInstance::GetDefault().GetTable("limelight"); + + // In your periodic method + auto botpose = limelightTable->GetEntry("botpose_wpiblue").GetDoubleArray({}); + if (!botpose.empty() && botpose[0] != 0.0) { + frc::Pose2d visionPose{units::meter_t{botpose[0]}, units::meter_t{botpose[1]}, + frc::Rotation2d{units::degree_t{botpose[5]}}}; + auto latency = limelightTable->GetEntry("tl").GetDouble(0) + limelightTable->GetEntry("cl").GetDouble(0); + auto timestamp = frc::Timer::GetFPGATimestamp() - units::millisecond_t{latency}; + + poseEstimator.AddVisionMeasurement(visionPose, timestamp); + } + ``` + + ```python + from ntcore import NetworkTableInstance + from wpilib import Timer + from wpimath.geometry import Pose2d, Rotation2d + + limelight_table = NetworkTableInstance.getDefault().getTable("limelight") + + # In your periodic method + botpose = limelight_table.getEntry("botpose_wpiblue").getDoubleArray([]) + if len(botpose) > 0 and botpose[0] != 0.0: + vision_pose = Pose2d(botpose[0], botpose[1], Rotation2d.fromDegrees(botpose[5])) + latency = limelight_table.getEntry("tl").getDouble(0) + limelight_table.getEntry("cl").getDouble(0) + timestamp = Timer.getFPGATimestamp() - (latency / 1000.0) + + pose_estimator.addVisionMeasurement(vision_pose, timestamp) + ``` + +.. note:: Use ``botpose_wpiblue`` or ``botpose_wpired`` based on your alliance color. These provide poses in the correct field coordinate system. + +See the `Limelight documentation `_ for the complete NetworkTables API. + +## Important Considerations + +### Timestamps + +It's critical to use the **timestamp from when the image was captured**, not when it was processed. Vision processing introduces latency (typically 20-100ms), and the pose estimator needs the actual capture time to properly fuse the measurement with odometry data. + +Most vision libraries provide this timestamp: + +- PhotonVision: ``result.timestampSeconds`` +- Limelight: Calculate from ``tl`` (targeting latency) + ``cl`` (capture latency) + +### Standard Deviations + +The accuracy of vision measurements varies based on several factors: + +- **Distance from tags**: Measurements are less accurate when far from tags +- **Number of tags**: Seeing multiple tags improves accuracy +- **Tag ambiguity**: Low-resolution or angled views reduce accuracy +- **Camera quality**: Higher resolution cameras provide better accuracy + +You should scale the standard deviations passed to ``AddVisionMeasurement()`` based on these factors. A common approach is to use a small baseline standard deviation and scale it by the square of distance divided by tag count. The specific baseline values will depend on your camera setup and testing. + +.. tab-set-code:: + + ```java + // Example: Scale standard deviations based on distance and tag count + double avgDistance = /* calculate average distance to tags in meters */; + int tagCount = /* number of tags seen */; + + // Baseline standard deviations (for 1 tag at 1 meter) + // Tune these based on your specific camera setup + double xyStdDevBaseline = 0.02; // meters + double thetaStdDevBaseline = 0.06; // radians + + // Scale based on distance squared and number of tags + double stdDevFactor = Math.pow(avgDistance, 2) / tagCount; + double xyStdDev = xyStdDevBaseline * stdDevFactor; + // Only trust rotation with multiple tags; single tag rotation is ambiguous + double thetaStdDev = tagCount > 1 ? thetaStdDevBaseline * stdDevFactor : Double.MAX_VALUE; + + poseEstimator.addVisionMeasurement( + visionPose, + timestamp, + VecBuilder.fill(xyStdDev, xyStdDev, thetaStdDev) + ); + ``` + + ```c++ + // Example: Scale standard deviations based on distance and tag count + double avgDistance = /* calculate average distance to tags in meters */; + int tagCount = /* number of tags seen */; + + // Baseline standard deviations (for 1 tag at 1 meter) + // Tune these based on your specific camera setup + double xyStdDevBaseline = 0.02; // meters + double thetaStdDevBaseline = 0.06; // radians + + // Scale based on distance squared and number of tags + double stdDevFactor = std::pow(avgDistance, 2) / tagCount; + double xyStdDev = xyStdDevBaseline * stdDevFactor; + // Only trust rotation with multiple tags; single tag rotation is ambiguous + double thetaStdDev = tagCount > 1 ? thetaStdDevBaseline * stdDevFactor + : std::numeric_limits::max(); + + poseEstimator.AddVisionMeasurement( + visionPose, + timestamp, + {xyStdDev, xyStdDev, thetaStdDev} + ); + ``` + + ```python + # Example: Scale standard deviations based on distance and tag count + avg_distance = # calculate average distance to tags in meters + tag_count = # number of tags seen + + # Baseline standard deviations (for 1 tag at 1 meter) + # Tune these based on your specific camera setup + xy_std_dev_baseline = 0.02 # meters + theta_std_dev_baseline = 0.06 # radians + + # Scale based on distance squared and number of tags + std_dev_factor = (avg_distance ** 2) / tag_count + xy_std_dev = xy_std_dev_baseline * std_dev_factor + # Only trust rotation with multiple tags; single tag rotation is ambiguous + theta_std_dev = theta_std_dev_baseline * std_dev_factor if tag_count > 1 else float('inf') + + pose_estimator.addVisionMeasurement( + vision_pose, + timestamp, + (xy_std_dev, xy_std_dev, theta_std_dev) + ) + ``` + +See :doc:`/docs/software/advanced-controls/state-space/state-space-pose-estimators` for more information about tuning standard deviations. + +### Rejecting Bad Measurements + +You should reject vision measurements in certain situations: + +- **No tags detected**: Only use measurements when tags are visible +- **High ambiguity**: Reject measurements with low confidence (check tag ambiguity values) +- **Unrealistic poses**: Reject measurements that are far outside the field boundaries or far from your current estimate +- **During rapid motion**: Vision measurements may be less reliable during fast turns or acceleration + +The following example demonstrates rejecting poses outside field boundaries with a small tolerance to allow for measurement noise near field edges. Other rejection criteria (ambiguity checks, distance from current estimate, etc.) will depend on your specific vision library and requirements. + +.. tab-set-code:: + + ```java + var result = photonPoseEstimator.update(); + if (result.isPresent()) { + var estimatedPose = result.get(); + + // Check if pose is reasonable (within field boundaries with tolerance) + double margin = 0.5; // meters of tolerance for edge measurements + if (estimatedPose.estimatedPose.getX() >= -margin && + estimatedPose.estimatedPose.getX() <= fieldLayout.getFieldLength() + margin && + estimatedPose.estimatedPose.getY() >= -margin && + estimatedPose.estimatedPose.getY() <= fieldLayout.getFieldWidth() + margin) { + + poseEstimator.addVisionMeasurement( + estimatedPose.estimatedPose.toPose2d(), + estimatedPose.timestampSeconds + ); + } + } + ``` + + ```c++ + auto result = photonPoseEstimator.Update(); + if (result) { + // Check if pose is reasonable (within field boundaries with tolerance) + units::meter_t margin = 0.5_m; // tolerance for edge measurements + if (result->estimatedPose.X() >= -margin && + result->estimatedPose.X() <= fieldLayout.GetFieldLength() + margin && + result->estimatedPose.Y() >= -margin && + result->estimatedPose.Y() <= fieldLayout.GetFieldWidth() + margin) { + + poseEstimator.AddVisionMeasurement( + result->estimatedPose.ToPose2d(), + result->timestamp + ); + } + } + ``` + + ```python + result = photon_pose_estimator.update() + if result is not None: + # Check if pose is reasonable (within field boundaries with tolerance) + margin = 0.5 # meters of tolerance for edge measurements + if (-margin <= result.estimatedPose.X() <= field_layout.getFieldLength() + margin and + -margin <= result.estimatedPose.Y() <= field_layout.getFieldWidth() + margin): + + pose_estimator.addVisionMeasurement( + result.estimatedPose.toPose2d(), + result.timestamp + ) + ``` + +## Custom Vision Solutions + +If you're implementing your own vision processing, you'll need to: + +1. **Detect tags and get camera-to-tag transforms**: Use a library like OpenCV's ``solvePnP`` to calculate the transformation from your camera to each detected tag +2. **Transform to robot pose**: Apply your camera-to-robot transform (determined by camera mounting position) +3. **Transform to field pose**: Use the tag's known field position from ``AprilTagFieldLayout`` to calculate the robot's field position +4. **Handle latency**: Capture and use the image timestamp, accounting for processing delay + +This approach requires solid understanding of 3D geometry and coordinate transformations. Most teams are better served using existing vision libraries that handle these details. + +## See Also + +- :doc:`/docs/software/advanced-controls/state-space/state-space-pose-estimators` - Using pose estimators with vision measurements +- :doc:`/docs/software/basic-programming/coordinate-system` - Understanding the FRC coordinate system +- `PhotonVision Documentation `__ - Complete PhotonVision documentation +- `Limelight Documentation `__ - Complete Limelight documentation diff --git a/source/docs/software/vision-processing/apriltag/index.rst b/source/docs/software/vision-processing/apriltag/index.rst index 06f7e9506b..3902634a67 100644 --- a/source/docs/software/vision-processing/apriltag/index.rst +++ b/source/docs/software/vision-processing/apriltag/index.rst @@ -4,3 +4,4 @@ :maxdepth: 2 apriltag-intro + apriltag-pose-estimation