This repository provides the source code for uncertainty estimation in Graph Neural Networks (GNNs) on both static and dynamic graphs based on specific SPDEs.
Cora: Downloadable from https://github.com/kimiyoung/planetoid/tree/master/data
CiteSeer: Downloadable from https://github.com/kimiyoung/planetoid/tree/master/data
Pubmed: Downloadable from https://github.com/kimiyoung/planetoid/tree/master/data
OGBN-Arxiv: Downloadable from https://ogb.stanford.edu/docs/nodeprop/
Amazon-Computers: Downloadable from https://github.com/shchur/gnn-benchmark/
BC-OTC: Downloadable from http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
Reddit: Downloadable from http://snap.stanford.edu/data/soc-RedditHyperlinks.html
UCI: Downloadable from http://konect.uni-koblenz.de/networks/opsahl-ucsocial
AS: Downloadable from http://snap.stanford.edu/data/as-733.html
Elliptic: Downloadable from https://www.kaggle.com/ellipticco/elliptic-data-set
Brain: Downloadable from https://www.dropbox.com/sh/33p0gk4etgdjfvz/AACe2INXtp3N0u9xRdszq4vua?dl=0
For static graphs: python -u main.py --use_bn --dataset --ood_type --lr --weight_decay --input_dropout --device
For dynamic graphs: python main_dgnn.py --config_file --OOD
[1] Xixun Lin, Wenxiao Zhang, Fengzhao Shi, Chuan Zhou, Lixin Zou, Xiangyu Zhao, Dawei Yin, Shirui Pan, Yanan Cao. Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification. International Conference on Machine Learning (ICML 2024)
[2] Xixun Lin, Zhiheng Zhou, Yanan Cao, Chuan Zhou, Nan Sun, Ge Zhang, Xiangyu Zhao, Peng Zhang, Peilin Zhao, Shirui Pan, Philip S. Yu. Graph Stochastic Jump-Diffusion Equation for Uncertainty Estimation on Dynamic Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI, under review)