-
Notifications
You must be signed in to change notification settings - Fork 296
update openai_api #1172
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
update openai_api #1172
Conversation
This PR adds support for Moore Threads (MUSA) GPU platform, expanding
LightLLM's hardware compatibility.
*NOTE:*
1. `_fwd_kernel_token_att1` has been slightly updated to ensure
compatibility with the Triton version.
2. `has_mtlink` will be used in upcoming enhancements to enable
multi-GPU support.
3. `torch` / `torch_musa` need to be upgraded to the latest versions.
### Testing Done
```bash
root@worker3218:/ws# python -m lightllm.server.api_server --model_dir /home/dist/Qwen3-0.6B/ --disable_cudagraph --host 0.0.0.0
WARNING 01-02 12:22:47 [sgl_utils.py:29] sgl_kernel is not installed, or the installed version did not support fa3. Try to upgrade it.
WARNING 01-02 12:22:47 [light_utils.py:13] lightllm_kernel is not installed, you can't use the api of it.
INFO 01-02 12:22:48 [__init__.py:36] Available plugins for group vllm.platform_plugins:
INFO 01-02 12:22:48 [__init__.py:38] - musa -> vllm_musa:register
INFO 01-02 12:22:48 [__init__.py:41] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
INFO 01-02 12:22:48 [__init__.py:232] Platform plugin musa is activated
WARNING 01-02 12:22:48 [vllm_utils.py:18] vllm is not installed, you can't use the api of it. You can solve it by running `pip install vllm`.
INFO 01-02 12:22:48 [communication_op.py:57] deep_ep is not installed, you can't use the api of it.
INFO 01-02 12:22:48 [cache_tensor_manager.py:17] USE_GPU_TENSOR_CACHE is On
WARNING 01-02 12:22:48 [grouped_fused_moe_ep.py:28] no deepep or deep_gemm
WARNING 01-02 12:22:48 [nixl_kv_transporter.py:19] nixl is not installed, which is required for pd disagreggation!!!
INFO 01-02 12:22:48 [shm_size_check.py:21] SHM check: Available=500.00 GB,Recommended=2.32 GB.Sufficient: True
INFO 01-02 12:22:48 [api_start.py:94] zmq mode head: ipc:///tmp/_28765_0_
INFO 01-02 12:22:48 [api_start.py:96] use tgi api: False
INFO 01-02 12:22:48 [api_start.py:233] alloced ports: [10105, 10128, 10009, 10002, 10268, 10173, 10255, 10190, 10225, 10305]
INFO 01-02 12:22:48 [api_start.py:284] all start args:Namespace(run_mode='normal', host='0.0.0.0', port=8000, httpserver_workers=1, zmq_mode='ipc:///tmp/_28765_0_', pd_master_ip='0.0.0.0', pd_master_port=1212, pd_decode_rpyc_port=42000, select_p_d_node_strategy='round_robin', config_server_host=None, config_server_port=None, nixl_pd_kv_page_num=16, nixl_pd_kv_page_size=1024, model_name='default_model_name', model_dir='/home/dist/Qwen3-0.6B/', tokenizer_mode='fast', load_way='HF', max_total_token_num=None, mem_fraction=0.9, batch_max_tokens=8448, eos_id=[151645], tool_call_parser=None, reasoning_parser=None, chat_template=None, running_max_req_size=1000, nnodes=1, node_rank=0, multinode_httpmanager_port=12345, multinode_router_gloo_port=20001, tp=1, dp=1, dp_balancer='bs_balancer', max_req_total_len=16384, nccl_host='127.0.0.1', nccl_port=28765, use_config_server_to_init_nccl=False, mode=[], trust_remote_code=False, disable_log_stats=False, log_stats_interval=10, disable_shm_warning=False, router_token_ratio=0.0, router_max_new_token_len=1024, router_max_wait_tokens=1, disable_aggressive_schedule=False, use_dynamic_prompt_cache=False, disable_dynamic_prompt_cache=False, chunked_prefill_size=4096, disable_chunked_prefill=False, diverse_mode=False, token_healing_mode=False, output_constraint_mode='none', first_token_constraint_mode=False, enable_multimodal=False, enable_multimodal_audio=False, enable_mps=False, disable_custom_allreduce=False, enable_custom_allgather=False, enable_tpsp_mix_mode=False, enable_dp_prefill_balance=False, enable_prefill_microbatch_overlap=False, enable_decode_microbatch_overlap=False, enable_flashinfer_prefill=False, enable_flashinfer_decode=False, enable_fa3=False, cache_capacity=200, embed_cache_storage_size=4, data_type='bfloat16', return_all_prompt_logprobs=False, use_reward_model=False, long_truncation_mode=None, use_tgi_api=False, health_monitor=False, metric_gateway=None, job_name='lightllm', grouping_key=[], push_interval=10, visual_infer_batch_size=1, visual_send_batch_size=1, visual_gpu_ids=[0], visual_tp=1, visual_dp=1, visual_nccl_ports=[29500], enable_monitor_auth=False, disable_cudagraph=True, enable_prefill_cudagraph=False, prefll_cudagraph_max_handle_token=512, graph_max_batch_size=256, graph_split_batch_size=32, graph_grow_step_size=16, graph_max_len_in_batch=16384, quant_type='none', quant_cfg=None, vit_quant_type='none', vit_quant_cfg=None, sampling_backend='triton', penalty_counter_mode='gpu_counter', ep_redundancy_expert_config_path=None, auto_update_redundancy_expert=False, enable_fused_shared_experts=False, mtp_mode=None, mtp_draft_model_dir=None, mtp_step=0, kv_quant_calibration_config_path=None, schedule_time_interval=0.03, enable_cpu_cache=False, cpu_cache_storage_size=2, cpu_cache_token_page_size=256, enable_disk_cache=False, disk_cache_storage_size=10, disk_cache_dir=None, enable_dp_prompt_cache_fetch=False, router_port=10105, detokenization_port=10128, http_server_port=10009, visual_port=10002, audio_port=10268, cache_port=10173, metric_port=10255, multi_level_kv_cache_port=10190, pd_node_infer_rpyc_ports=[10305], pd_node_id=294623010895931863621527973304373176200, pd_p_allowed_port_min=20000, pd_p_allowed_port_max=30000)
WARNING 01-02 12:22:55 [sgl_utils.py:29] sgl_kernel is not installed, or the installed version did not support fa3. Try to upgrade it.
WARNING 01-02 12:22:55 [light_utils.py:13] lightllm_kernel is not installed, you can't use the api of it.
INFO 01-02 12:22:55 [__init__.py:36] Available plugins for group vllm.platform_plugins:
INFO 01-02 12:22:55 [__init__.py:38] - musa -> vllm_musa:register
INFO 01-02 12:22:55 [__init__.py:41] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
INFO 01-02 12:22:55 [__init__.py:232] Platform plugin musa is activated
WARNING 01-02 12:22:55 [vllm_utils.py:18] vllm is not installed, you can't use the api of it. You can solve it by running `pip install vllm`.
INFO 01-02 12:22:55 [communication_op.py:57] deep_ep is not installed, you can't use the api of it.
2026-01-02 12:22:55 | server | 140684395422848 | INFO : server started on [0.0.0.0]:10255
INFO 01-02 12:22:55 [start_utils.py:37] init func start_metric_manager : init ok
WARNING 01-02 12:23:02 [sgl_utils.py:29] sgl_kernel is not installed, or the installed version did not support fa3. Try to upgrade it.
WARNING 01-02 12:23:02 [light_utils.py:13] lightllm_kernel is not installed, you can't use the api of it.
WARNING 01-02 12:23:02 [sgl_utils.py:29] sgl_kernel is not installed, or the installed version did not support fa3. Try to upgrade it.
WARNING 01-02 12:23:02 [light_utils.py:13] lightllm_kernel is not installed, you can't use the api of it.
INFO 01-02 12:23:02 [__init__.py:36] Available plugins for group vllm.platform_plugins:
INFO 01-02 12:23:02 [__init__.py:38] - musa -> vllm_musa:register
INFO 01-02 12:23:02 [__init__.py:41] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
INFO 01-02 12:23:02 [__init__.py:232] Platform plugin musa is activated
WARNING 01-02 12:23:02 [vllm_utils.py:18] vllm is not installed, you can't use the api of it. You can solve it by running `pip install vllm`.
INFO 01-02 12:23:02 [communication_op.py:57] deep_ep is not installed, you can't use the api of it.
INFO 01-02 12:23:02 [cache_tensor_manager.py:17] USE_GPU_TENSOR_CACHE is On
INFO 01-02 12:23:02 [__init__.py:36] Available plugins for group vllm.platform_plugins:
INFO 01-02 12:23:02 [__init__.py:38] - musa -> vllm_musa:register
INFO 01-02 12:23:02 [__init__.py:41] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
INFO 01-02 12:23:02 [__init__.py:232] Platform plugin musa is activated
WARNING 01-02 12:23:02 [vllm_utils.py:18] vllm is not installed, you can't use the api of it. You can solve it by running `pip install vllm`.
INFO 01-02 12:23:02 [communication_op.py:57] deep_ep is not installed, you can't use the api of it.
WARNING 01-02 12:23:02 [grouped_fused_moe_ep.py:28] no deepep or deep_gemm
INFO 01-02 12:23:02 [cache_tensor_manager.py:17] USE_GPU_TENSOR_CACHE is On
WARNING 01-02 12:23:03 [grouped_fused_moe_ep.py:28] no deepep or deep_gemm
INFO 01-02 12:23:03 [manager.py:36] pub_to_httpserver sendhwm 1000
WARNING 01-02 12:23:03 [nixl_kv_transporter.py:19] nixl is not installed, which is required for pd disagreggation!!!
2026-01-02 12:23:03 | server | 140684395422848 | INFO : accepted ('127.0.0.1', 36414) with fd 25
2026-01-02 12:23:03 | server | 140653235951168 | INFO : welcome ('127.0.0.1', 36414)
INFO 01-02 12:23:08 [cache_tensor_manager.py:17] USE_GPU_TENSOR_CACHE is On
WARNING 01-02 12:23:09 [sgl_utils.py:29] sgl_kernel is not installed, or the installed version did not support fa3. Try to upgrade it.
INFO 01-02 12:23:10 [__init__.py:36] Available plugins for group vllm.platform_plugins:
INFO 01-02 12:23:10 [__init__.py:38] - musa -> vllm_musa:register
INFO 01-02 12:23:10 [__init__.py:41] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
INFO 01-02 12:23:10 [__init__.py:232] Platform plugin musa is activated
WARNING 01-02 12:23:10 [vllm_utils.py:18] vllm is not installed, you can't use the api of it. You can solve it by running `pip install vllm`.
WARNING 01-02 12:23:10 [light_utils.py:13] lightllm_kernel is not installed, you can't use the api of it.
WARNING 01-02 12:23:10 [grouped_fused_moe_ep.py:28] no deepep or deep_gemm
INFO 01-02 12:23:10 [communication_op.py:57] deep_ep is not installed, you can't use the api of it.
WARNING 01-02 12:23:10 [nixl_kv_transporter.py:19] nixl is not installed, which is required for pd disagreggation!!!
INFO 01-02 12:23:10 [model_rpc.py:67] Initialized RPC server for rank 0.
INFO 01-02 12:23:10 [model_rpc.py:168] use ChunkedPrefillBackend
INFO 01-02 12:23:11 [basemodel.py:157] Initial quantization. The default quantization method is none
pid 39235 Loading model weights with 1 workers: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.01it/s]
INFO 01-02 12:23:12 [mem_utils.py:37] mode setting params: []
INFO 01-02 12:23:12 [mem_utils.py:57] Model kv cache using mode normal
INFO 01-02 12:23:12 [mem_manager.py:84] 69.38735313415528 GB space is available after load the model weight
INFO 01-02 12:23:12 [mem_manager.py:84] 0.109375 MB is the size of one token kv cache
INFO 01-02 12:23:12 [mem_manager.py:84] 649624 is the profiled max_total_token_num with the mem_fraction 0.9
INFO 01-02 12:23:12 [mem_manager.py:84]
warming up: 0%| | 0/12 [00:00<?, ?it/s]WARNING 01-02 12:23:23 [autotuner.py:169] No kernel config for silu_and_mul_fwd:v1 in {N=3072,out_dtype=torch.bfloat16}_MTT_S5000.json,the performance may be suboptimal!You can use LIGHTLLM_TRITON_AUTOTUNE_LEVEL=1 to enable autotune.
WARNING 01-02 12:23:23 [kernel_config.py:40] can not find config_path /ws/lightllm/common/all_kernel_configs/moe_silu_and_mul_kernel/{N=3072,out_dtype=torch.bfloat16}_MTT_S5000.json kernel name moe_silu_and_mul_kernel use default kernel setting
warming up: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:15<00:00, 1.29s/it]
INFO 01-02 12:23:30 [basemodel.py:812] begin check max_len infer
INFO 01-02 12:23:30 [basemodel.py:849] check max_len 8448 infer ok
INFO 01-02 12:23:45 [base_backend.py:185] loaded model class <class 'lightllm.models.qwen3.model.Qwen3TpPartModel'>
INFO 01-02 12:23:45 [manager.py:196] use req queue ChunkedPrefillQueue
INFO 01-02 12:23:45 [start_utils.py:37] init func start_router_process : init ok
INFO 01-02 12:23:45 [start_utils.py:37] init func start_detokenization_process : init ok
INFO 01-02 12:23:45 [api_start.py:58] start process pid 30307
INFO 01-02 12:23:45 [api_start.py:59] http server pid 54746
[2026-01-02 12:23:45 +0800] [54746] [INFO] Starting gunicorn 23.0.0
[2026-01-02 12:23:45 +0800] [54746] [INFO] Listening at: http://0.0.0.0:8000 (54746)
[2026-01-02 12:23:45 +0800] [54746] [INFO] Using worker: uvicorn.workers.UvicornWorker
[2026-01-02 12:23:45 +0800] [54966] [INFO] Booting worker with pid: 54966
WARNING 01-02 12:23:51 [sgl_utils.py:29] sgl_kernel is not installed, or the installed version did not support fa3. Try to upgrade it.
WARNING 01-02 12:23:51 [light_utils.py:13] lightllm_kernel is not installed, you can't use the api of it.
INFO 01-02 12:23:52 [__init__.py:36] Available plugins for group vllm.platform_plugins:
INFO 01-02 12:23:52 [__init__.py:38] - musa -> vllm_musa:register
INFO 01-02 12:23:52 [__init__.py:41] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
INFO 01-02 12:23:52 [__init__.py:232] Platform plugin musa is activated
WARNING 01-02 12:23:52 [vllm_utils.py:18] vllm is not installed, you can't use the api of it. You can solve it by running `pip install vllm`.
INFO 01-02 12:23:52 [communication_op.py:57] deep_ep is not installed, you can't use the api of it.
INFO 01-02 12:23:52 [cache_tensor_manager.py:17] USE_GPU_TENSOR_CACHE is On
WARNING 01-02 12:23:52 [grouped_fused_moe_ep.py:28] no deepep or deep_gemm
[2026-01-02 12:23:52 +0800] [54966] [INFO] Started server process [54966]
[2026-01-02 12:23:52 +0800] [54966] [INFO] Waiting for application startup.
INFO 01-02 12:23:52 [api_http.py:359] server start up
2026-01-02 12:23:53 | server | 140684395422848 | INFO : accepted ('127.0.0.1', 55128) with fd 26
2026-01-02 12:23:53 | server | 140653227558464 | INFO : welcome ('127.0.0.1', 55128)
2026-01-02 12:23:53 | server | 140684395422848 | INFO : accepted ('127.0.0.1', 55144) with fd 27
2026-01-02 12:23:53 | server | 140653219165760 | INFO : welcome ('127.0.0.1', 55144)
INFO 01-02 12:23:54 [req_id_generator.py:34] ReqIDGenerator init finished
INFO 01-02 12:23:54 [api_http.py:363] server start up ok, loop use is <uvloop.Loop running=True closed=False debug=False>
[2026-01-02 12:23:54 +0800] [54966] [INFO] Application startup complete.
INFO 01-02 12:23:58 [manager.py:417] recieved req X-Request-Id: X-Session-Id: start_time:2026-01-02 12:23:58 lightllm_req_id:8
INFO 01-02 12:23:58 [manager.py:424] router recive req id 8 cost time 0.05271601676940918 s
DEBUG 01-02 12:23:58 [manager.py:322] Prefill Batch: batch_id=-1, time:1767327838.6764812s req_ids:[8]
DEBUG 01-02 12:23:58 [manager.py:322]
INFO 01-02 12:23:58 [manager.py:55] detokenization recv req id 8 cost time 0.0744318962097168 s
INFO 01-02 12:23:59 [manager.py:163] detoken release req id 8
INFO 01-02 12:23:59 [manager.py:611] X-Request-Id: X-Session-Id: start_time:2026-01-02 12:23:58 lightllm_req_id:8 first_token_cost:409.63053703308105ms total_cost_time:907.1474075317383ms,out_token_counter:17 mean_per_token_cost_time: 29.265698264626895ms prompt_token_num:4 gpu cache hit: False gpu_prompt_cache_len:0 gpu_prompt_cache_ratio:0.0 cpu cache hit: False cpu_prompt_cache_len:0 cpu_prompt_cache_ratio:0.0 disk cache hit: False disk_prompt_cache_len:0 disk_prompt_cache_ratio:0.0 mtp_avg_token_per_step:1.0
127.0.0.1:38158 - "POST /generate HTTP/1.1" 200
DEBUG 01-02 12:23:59 [req_manager.py:78] freed all request size 1008
DEBUG 01-02 12:23:59 [infer_batch.py:172] free a batch state:
DEBUG 01-02 12:23:59 [infer_batch.py:172] radix refed token num 0
DEBUG 01-02 12:23:59 [infer_batch.py:172] radix hold token num 21
DEBUG 01-02 12:23:59 [infer_batch.py:172] mem manager can alloc token num 649603
DEBUG 01-02 12:23:59 [infer_batch.py:172] mem manager total size 649624
INFO 01-02 12:23:59 [batch.py:56] router release req id 8
INFO 01-02 12:23:59 [shm_req_manager.py:111] all shm req has been release ok
```
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Summary of ChangesHello @WANDY666, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed! This pull request refines the OpenAI API integration by introducing a new Highlights
🧠 New Feature in Public Preview: You can now enable Memory to help Gemini Code Assist learn from your team's feedback. This makes future code reviews more consistent and personalized to your project's style. Click here to enable Memory in your admin console. Using Gemini Code AssistThe full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips. Invoking Gemini You can request assistance from Gemini at any point by creating a comment using either
Customization To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a Limitations & Feedback Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here. You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension. Footnotes
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Code Review
This pull request updates the OpenAI API compatibility by introducing a CharacterMessage model for character-based chats, adding alias support for role_setting, and making the code more robust when handling different message types. My review focuses on an incomplete feature addition for system_instruction, which is currently non-functional as the corresponding field is missing from the request model.
lightllm/server/build_prompt.py
Outdated
| kwargs = { | ||
| "conversation": messages, | ||
| # 假设 request 对象里有这个字段,或者你想传空 | ||
| "system_instruction": getattr(request, "system_instruction", ""), |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The code attempts to access request.system_instruction, but this field is not defined in the ChatCompletionRequest model in api_models.py. This will always result in an empty string "" being used due to getattr, making this new parameter ineffective.
To properly implement this feature, you should add system_instruction as an optional field to the ChatCompletionRequest model in lightllm/server/api_models.py.
For example:
# In lightllm/server/api_models.py
class ChatCompletionRequest(BaseModel):
# ...
messages: List[ChatCompletionMessageParam]
system_instruction: Optional[str] = None
# ...Additionally, the Chinese comment # 假设 request 对象里有这个字段,或者你想传空 is informal. It would be better to remove it once the feature is fully implemented, or replace it with a formal English comment explaining the purpose of system_instruction.
No description provided.