Skip to content

SuperQuantX is a unified quantum computing platform that makes quantum algorithms and quantum machine learning accessible through a single, consistent API.

License

Notifications You must be signed in to change notification settings

SuperagenticAI/superquantx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

24 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

PyPI - Version Python Version License Tests Documentation Code style: black Ruff

SuperQuantX

The foundation for the future of Agentic and Quantum AI

SuperQuantX unified API for the next wave of Quantum AI. It's a foundation to build powerful Quantum Agentic AI systems with a single interface to Qiskit, Cirq, PennyLane, and more. SuperQuantX is your launchpad into the world of Quantum + Agentic AI.

Unified Quantum Computing Platform - Building autonomous quantum-enhanced AI systems

๐Ÿ“– Read the Full Documentation โ†’

Research by Superagentic AI - Quantum AI Research

๐Ÿš€ What is SuperQuantX?

SuperQuantX is a unified quantum computing platform that makes quantum algorithms and quantum machine learning accessible through a single, consistent API. Whether you're a researcher, developer, or quantum enthusiast, SuperQuantX provides:

  • ๐ŸŽฏ Single API - Works across all major quantum backends (IBM, Google, AWS, Quantinuum, D-Wave)
  • ๐Ÿค– Quantum Agents - Pre-built autonomous agents for trading, research, and optimization
  • ๐Ÿง  Quantum ML - Advanced quantum machine learning algorithms and neural networks
  • โšก Easy Setup - Get started in minutes with comprehensive documentation

โœจ Key Features

๐Ÿ”— Universal Quantum Backend Support

# Same code works on ANY quantum platform
qsvm = sqx.QuantumSVM(backend='pennylane')  # PennyLane
qsvm = sqx.QuantumSVM(backend='qiskit')     # IBM Qiskit
qsvm = sqx.QuantumSVM(backend='cirq')       # Google Cirq
qsvm = sqx.QuantumSVM(backend='braket')     # AWS Braket
qsvm = sqx.QuantumSVM(backend='quantinuum') # Quantinuum H-Series

๐Ÿค– Autonomous Quantum Agents

Ready-to-deploy intelligent agents powered by quantum algorithms:

  • QuantumTradingAgent - Portfolio optimization and risk analysis
  • QuantumResearchAgent - Scientific hypothesis generation and testing
  • QuantumOptimizationAgent - Complex combinatorial and continuous optimization
  • QuantumClassificationAgent - Advanced ML with quantum advantage

๐Ÿง  Quantum Machine Learning

State-of-the-art quantum ML algorithms:

  • Quantum Support Vector Machines - Enhanced pattern recognition
  • Quantum Neural Networks - Hybrid quantum-classical architectures
  • QAOA & VQE - Optimization and molecular simulation
  • Quantum Clustering - Advanced data analysis techniques

๐Ÿš€ Quick Start

Installation

# Install with uv (recommended)
curl -LsSf https://astral.sh/uv/install.sh | sh
git clone https://github.com/SuperagenticAI/superquantx.git
cd superquantx
uv sync --extra all

# Or with pip
pip install superquantx

Deploy Your First Quantum Agent

import superquantx as sqx

# Deploy quantum trading agent
agent = sqx.QuantumTradingAgent(
    strategy="quantum_portfolio",
    risk_tolerance=0.3
)
results = agent.deploy()
print(f"Performance: {results.result['performance']}")

Quantum Machine Learning

# Quantum SVM with automatic backend selection
import numpy as np
qsvm = sqx.QuantumSVM(backend='auto')

# Mock training data for demonstration
X_train = np.random.rand(20, 4)
y_train = np.random.choice([0, 1], 20)
X_test = np.random.rand(10, 4)
y_test = np.random.choice([0, 1], 10)

qsvm.fit(X_train, y_train)
accuracy = qsvm.score(X_test, y_test)
print(f"Quantum SVM accuracy: {accuracy}")

Advanced Quantum Algorithms

# Molecular simulation with VQE
import numpy as np
from sklearn.datasets import make_classification

# Create sample Hamiltonian for VQE
hamiltonian = np.array([[1, 0], [0, -1]])  # Simple Pauli-Z
vqe = sqx.VQE(hamiltonian=hamiltonian, backend="pennylane")
ground_state = vqe.find_ground_state()
print(f"Ground state energy: {ground_state}")

# Optimization with QAOA
X, y = make_classification(n_samples=10, n_features=4, n_classes=2, random_state=42)
qaoa = sqx.QAOA(backend="pennylane")
qaoa.fit(X, y)
print("โœ… QAOA successfully fitted for optimization tasks")

๐Ÿ“– Documentation

Complete documentation is available at superagenticai.github.io/superquantx

The documentation includes comprehensive guides for getting started, detailed API references, tutorials, and examples for all supported quantum backends. Visit the documentation site for:

  • Getting Started - Installation, configuration, and your first quantum program
  • User Guides - Platform overview, backends, and algorithms
  • Tutorials - Hands-on quantum computing and machine learning examples
  • API Reference - Complete API documentation with examples
  • Development - Contributing guidelines, architecture, and testing

๐ŸŽฏ Supported Platforms

SuperQuantX provides unified access to all major quantum computing platforms:

Backend Provider Hardware Simulator
PennyLane Multi-vendor โœ… Various โœ…
Qiskit IBM โœ… IBM Quantum โœ…
Cirq Google โœ… Google Quantum AI โœ…
AWS Braket Amazon โœ… IonQ, Rigetti โœ…
TKET Quantinuum โœ… H-Series โœ…
Ocean D-Wave โœ… Advantage โœ…

๐Ÿค– Quantum Agents

Pre-built autonomous agents for complex problem solving:

  • ๐Ÿฆ QuantumTradingAgent - Portfolio optimization and risk analysis
  • ๐Ÿ”ฌ QuantumResearchAgent - Scientific hypothesis generation and testing
  • โšก QuantumOptimizationAgent - Combinatorial and continuous optimization
  • ๐Ÿง  QuantumClassificationAgent - Advanced ML with quantum advantage

๐Ÿงฎ Quantum Algorithms

Comprehensive library of quantum algorithms and techniques:

๐Ÿ” Quantum Machine Learning

  • Quantum Support Vector Machines (QSVM) - Enhanced pattern recognition with quantum kernels
  • Quantum Neural Networks (QNN) - Hybrid quantum-classical neural architectures
  • Quantum Principal Component Analysis (QPCA) - Quantum dimensionality reduction
  • Quantum K-Means - Clustering with quantum distance calculations

โšก Optimization Algorithms

  • Quantum Approximate Optimization Algorithm (QAOA) - Combinatorial optimization
  • Variational Quantum Eigensolver (VQE) - Molecular simulation and optimization
  • Quantum Annealing - Large-scale optimization with D-Wave systems

๐Ÿง  Advanced Quantum AI

  • Quantum Reinforcement Learning - RL with quantum advantage
  • Quantum Natural Language Processing - Quantum-enhanced text analysis
  • Quantum Computer Vision - Image processing with quantum circuits

๐Ÿ’ก Why SuperQuantX?

Traditional Approach SuperQuantX Advantage
โŒ Multiple complex SDKs โœ… Single unified API
โŒ Months to learn quantum โœ… Minutes to first algorithm
โŒ Backend-specific code โœ… Write once, run anywhere
โŒ Manual optimization โœ… Automatic backend selection
โŒ Limited algorithms โœ… Comprehensive algorithm library

๐Ÿค Contributing

We welcome contributions to SuperQuantX! Here's how to get involved:

๐Ÿ”ง Development Setup

# Fork and clone the repository
git clone https://github.com/your-username/superquantx.git
cd superquantx

# Install development dependencies
uv sync --extra dev

# Run tests to verify setup
uv run pytest

๐Ÿ› Bug Reports & Feature Requests

๐Ÿ“ Documentation

Help improve our documentation:

  • Fix typos and clarify explanations
  • Add examples and tutorials
  • Improve API documentation
  • Translate documentation

๐Ÿ”— Resources & Community

๐Ÿ“š Learn More

๐Ÿ“„ License

SuperQuantX is released under the Apache License 2.0. Feel free to use it in your projects, research, and commercial applications.


๐Ÿš€ Get Started Now

# Install SuperQuantX
pip install superquantx

# Deploy your first quantum agent
python -c "
import superquantx as sqx
agent = sqx.QuantumOptimizationAgent()
print('โœ… SuperQuantX is ready!')
"

Ready to explore quantum computing?

๐Ÿ‘‰ Start with the Quick Start Guide โ†’


SuperQuantX: Making Quantum Computing Accessible to all

Built with โค๏ธ by Superagentic AI

โญ Star this repo if SuperQuantX helps your quantum journey!

About

SuperQuantX is a unified quantum computing platform that makes quantum algorithms and quantum machine learning accessible through a single, consistent API.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published