Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
818 changes: 818 additions & 0 deletions ARENA_Balanced_Brackets.py

Large diffs are not rendered by default.

1,722 changes: 1,722 additions & 0 deletions ARENA_Indirect_Object_Identification.py

Large diffs are not rendered by default.

Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
115 changes: 115 additions & 0 deletions ARENA_files/arena_balanced_bracket_classifier_datasets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# %%

from typing import Union

import torch as t
from jaxtyping import Int
from torch import Tensor

device = t.device("cpu")

MAIN = __name__ == "__main__"
# %%


class SimpleTokenizer:
START_TOKEN = 0
PAD_TOKEN = 1
END_TOKEN = 2
base_d = {"[start]": START_TOKEN, "[pad]": PAD_TOKEN, "[end]": END_TOKEN}

def __init__(self, alphabet: str):
self.alphabet = alphabet
# the 3 is because there are 3 special tokens (defined just above)
self.t_to_i = {**{c: i + 3 for i, c in enumerate(alphabet)}, **self.base_d}
self.i_to_t = {i: c for c, i in self.t_to_i.items()}

def tokenize(self, strs: list[str], max_len=None) -> Int[Tensor, "batch seq"]:
def c_to_int(c: str) -> int:
if c in self.t_to_i:
return self.t_to_i[c]
else:
raise ValueError(c)

if isinstance(strs, str):
strs = [strs]

if max_len is None:
max_len = max((max(len(s) for s in strs), 1))

ints = [
[self.START_TOKEN]
+ [c_to_int(c) for c in s]
+ [self.END_TOKEN]
+ [self.PAD_TOKEN] * (max_len - len(s))
for s in strs
]
return t.tensor(ints)

def decode(self, tokens) -> list[str]:
assert tokens.ndim >= 2, "Need to have a batch dimension"

def int_to_c(c: int) -> str:
if c < len(self.i_to_t):
return self.i_to_t[c]
else:
raise ValueError(c)

return [
"".join(
int_to_c(i.item()) for i in seq[1:] if i != self.PAD_TOKEN and i != self.END_TOKEN
)
for seq in tokens
]

def __repr__(self) -> str:
return f"SimpleTokenizer({self.alphabet!r})"

# %%

tokenizer = SimpleTokenizer("()")

class BracketsDataset:
"""A dataset containing sequences, is_balanced labels, and tokenized sequences"""

def __init__(self, data_tuples: list):
"""
data_tuples is list[tuple[str, bool]] signifying sequence and label
"""
self.tokenizer = SimpleTokenizer("()")
self.strs = [x[0] for x in data_tuples]
self.isbal = t.tensor([x[1] for x in data_tuples])
self.toks = self.tokenizer.tokenize(self.strs)
self.open_proportion = t.tensor([s.count("(") / len(s) for s in self.strs])
self.starts_open = t.tensor([s[0] == "(" for s in self.strs]).bool()

def __len__(self) -> int:
return len(self.strs)

def __getitem__(self, idx) -> "BracketsDataset | tuple[str, t.Tensor, t.Tensor]":
if isinstance(idx, slice):
return self.__class__(list(zip(self.strs[idx], self.isbal[idx])))
return (self.strs[idx], self.isbal[idx], self.toks[idx])

def to(self, device) -> "BracketsDataset":
self.isbal = self.isbal.to(device)
self.toks = self.toks.to(device)
self.open_proportion = self.open_proportion.to(device)
self.starts_open = self.starts_open.to(device)
return self

@property
def seq_length(self) -> int:
return self.toks.size(-1)

@classmethod
def with_length(
cls, data_tuples: list[tuple[str, bool]], selected_len: int
) -> "BracketsDataset":
return cls([(s, b) for (s, b) in data_tuples if len(s) == selected_len])

@classmethod
def with_start_char(
cls, data_tuples: list[tuple[str, bool]], start_char: str
) -> "BracketsDataset":
return cls([(s, b) for (s, b) in data_tuples if s[0] == start_char])
32 changes: 32 additions & 0 deletions ARENA_files/arena_part41_ioi_tests.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@

import sys
from pathlib import Path
from typing import Callable

import torch as t

# Make sure exercises are in the path
if str(exercises_dir := Path(__file__).parent.parent) not in sys.path:
sys.path.append(str(exercises_dir))


def test_logits_to_ave_logit_diff(logits_to_ave_logit_diff: Callable):
batch = 4
seq = 5
d_vocab = 6
logits = t.randn(batch, seq, d_vocab)
answer_tokens = t.randint(0, d_vocab, (batch, 2))

actual = logits_to_ave_logit_diff(logits, answer_tokens, per_prompt=True)
# expected = solutions.logits_to_ave_logit_diff(logits, answer_tokens, per_prompt=True)
final_logits = logits[:, -1, :]
answer_logits = final_logits.gather(dim=-1, index=answer_tokens)
correct_logits, incorrect_logits = answer_logits.unbind(dim=-1)
expected = correct_logits - incorrect_logits
t.testing.assert_close(actual, expected)

actual = logits_to_ave_logit_diff(logits, answer_tokens)
# expected = solutions.logits_to_ave_logit_diff(logits, answer_tokens)
t.testing.assert_close(actual, expected.mean())

print("All tests in `test_logits_to_ave_logit_diff` passed!")
Loading