This repository contains the implementations of our paper Grounding Hindsight Instructions in Multi-Goal Reinforcement Learning for Robotics. Both proposed methods HEIR and HIPSS are part of this source code.
@article{Roder_GroundingHindsight_2022,
title = {Grounding {{Hindsight Instructions}} in {{Multi-Goal Reinforcement Learning}} for {{Robotics}}},
author = {R{\"o}der, Frank and Eppe, Manfred and Wermter, Stefan},
journal = {arXiv preprint arXiv:2204.04308 [cs]},
year = {2022},
}
git clone https://github.com/frankroeder/hipss.git- pip users:
pip install -r requirements.txt - conda users:
conda create --file= conda_env.yaml
To reproduce the results of our paper, please have a look at the script train.sh
python train.py n_epochs=20 agent=LCSAC env_name=PandaNLReach2-v0python demo.py --demo-path <path to the trial folder>
python demo.py --wandb-url <wandb URI: entity/project/runs/trialid>- Copy
example.pyproject.tomltopyproject.tomland adjust the values. - Install
yapffor formatting andpyrightfor type-checking etc.