Skip to content

A reproducible Docker-based pipeline for running machine learning experiments with GPU support. This repository provides pre-configured Docker images, environment files, and scripts for: - Setting up GPU-enabled containers - Running training and inference - Managing environments reproducibly

License

Notifications You must be signed in to change notification settings

ibrar-syed/DL-Docker-pipeline

Repository files navigation

Before starting, please complete the system-level GPU setup
See: SYSTEM_GPU_SETUP.md

DL-Docker-pipeline

A reproducible Docker-based pipeline for running Machine/Deep learning exps, with GPU support. This repository provides pre-configured Docker images, environment files, and scripts for:

    • Setting up GPU-enabled containers
    • Running training and inference
    • Managing environments reproducible

ModelApp — GPU-Enabled Dockerized ML Environment

A complete, reproducible setup for deep learning experiments using Docker, Conda, and JupyterLab with GPU support.


Quick Start

1️ Clone the Repository

git clone https://github.com/<your-username>/ModelApp.git
cd ModelApp


2️. Build the Docker Image
sudo docker build -t modelapp-container .

3️. Run the Container (GPU + Jupyter)
docker run --gpus all -it --rm \
  -p 8888:8888 \
  -v $(pwd):/workspace \
  modelapp-container

-------------------------------------------------------------------------------------------------
📎 Flags:

--gpus all → enables GPU access inside container

-p 8888:8888 → maps JupyterLab port

-v $(pwd):/workspace → mounts project folder

Once running, open the browser link that appears (e.g. http://127.0.0.1:8888/lab?...).
---------------------------------------------------------------------------------------------------

4️.  Verify GPU Access

Inside the container:

nvidia-smi
python -c "import torch; print(torch.cuda.is_available())"


**You should see your GPU and True.**



Development Inside Container

**To open a terminal inside container:**

docker exec -it <container_id> /bin/bash




##To run training, or any other programs, you can start implementing your training/testing, etc.
i.e: 
python train.py


------------------------------------------------------------------------------------------------------------------
Why This Setup?

Reproducible ML experiments

Full GPU acceleration

No “it works on my machine” issues

Portable across OS/machines

Seamless JupyterLab workflowcd /workspace/src

---------------------------------------------------------------------------------------------------------------------
Contributing

Fork this repo

Create a new branch (feature/my-feature)

Commit your changes

Submit a pull request 

About

A reproducible Docker-based pipeline for running machine learning experiments with GPU support. This repository provides pre-configured Docker images, environment files, and scripts for: - Setting up GPU-enabled containers - Running training and inference - Managing environments reproducibly

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published