MRI reconstruction pipeline with retrospective motion correction and option to reverse a prospectively applied correction.
Supports raw data (Siemens .dat files) from MPRAGE and T2-SPACE sequences (an extension to diffusion EPI support is planned).
Includes: noise prewhitening, OS removal, iPAT/GRAPPA, non-Cartesian gridding (KbNUFFT), PF/POCS, coil combination, NIfTI export.
conda env create -f environment.yml
conda activate moco
pip install -e .pip install -e .
# For GPU
pip install -r requirements-gpu.txt
pip install -e ".[gpu]"Basic usage:
mocokit -i /path/to/folder/dat \
-tcl -td /path/to/tcl_dir \
-reverse -smooth \
-orig -center \
-device cuda:0 \
--cuda-visible-devices 0 \
--headless \
--numpy-precision 6 \
-v-i: Input directory containing.datfiles-tcl: Enable TCL processing-td: TCL directory path-reverse: Reverse motion correction-smooth: Apply smoothing-orig: Use original coordinates-center: Center reconstruction-device: Specify compute device (e.g.,cuda:0,cpu)--cuda-visible-devices: Set visible CUDA devices--headless: Run without GUI--numpy-precision: Set numerical precision-v: Verbose output
- Python 3.10+
- CUDA-compatible GPU (optional)
- Required packages listed in
environment.yml
If you use this repository, please cite:
Zariry Z, Lamberton F, Frost R, Gaass T, Troalen T, Rayson H, Slipsager JM, Richard N, van der Kouwe A, Bonaiuto J, Hiba B. An in-vivo approach to quantify intra-MRI head motion tracking accuracy: comparison of markerless optical tracking versus fat-navigators. medRxiv [Preprint]. 2025 Jul 17:2025.04.23. DOI: [10.1101/2025.04.23.25326185] (https://www.medrxiv.org/content/10.1101/2025.04.23.25326185v2)